SAND2017- 6338PE

Scientific Approaches to
Cybersecurity:

Design and Analysis of
Complex Digital Systems

Robert Armstrong and Jackson Mayo
Sandia National Laboratories, Livermore, CA

May 24, 2017

U.S. DEPARTMENT OF A 7 -

@ ENERGY INISA

What makes cybersecurity hard?) .

= We need to model cyber systems to say anything scientific
about them, but models of digital logic behave differently
from most models used in science

= Orto putit another way: Cybersecurity is a complex systems
problem

= Not just digital logic — also need to model:
= Human users and attackers

= Supply chain (how the system came to be)
= Physical infrastructure that the system interacts with (e.g., SCADA)

= We consider “trust” as a generalization of security that
includes potential attacks during the creation of the system
(e.g., planted vulnerabilities)

2

Cyber: inherently stable to < 1 bit,
usually chaotic to > 1 bit perturbations

= Cyber systems are both unpredictable and deterministic
= Hard, at first, to wrap your head around

= The same input to a generic program always outputs the same result

= A one-bit variation in the program, or just the input to the program,
produces wildly different results (Lyapunov exponent > 0)

Chaotic dynamical system Generic digital system
ga*m:

Finding the right approach for the job = [WEx.

= Sandiais interested in cyber systems broadly, but especially in
digital controllers for high-consequence physical systems

= There are at least three levels of scientific inquiry on the security of
cyber systems:
= Simulation and testing of particular (existing or proposed) cyber systems
= Explores behaviors one at a time; by itself can’t assess security quantitatively
= Mathematical analysis of particular (existing or proposed) cyber systems
= Seeks to establish security as a quantitative global property of a model
= Well-established example: mathematical proofs of cryptographic security
= Design of new cyber systems that are “secure by construction”

= Creates a system in a mathematically constrained fashion so the desired
properties are built-in

= The adequacy of the model (verification and validation) is a
perennial problem!

= The most rigorous analysis may be irrelevant if an attacker can operate

outside the model (see S5 wrench)
4

Economies of scale in computing:
Friend and enemy

Sandia
m National
Laboratories

Enormously complex hardware and software is created at enormous cost

= Costis recouped by stamping out millions of identical copies

A kid in his basement can make it do something interesting but unknown

(unpredictable). He can be certain he can do the same thing to your
desktop PC (deterministic)

In the general case, all digital designs share these problems

Solution: Make the design less general, more analyzable

Digital systems are prototypical
of broader complex systems

= One way of defining “complex” systems: those that behave as
large-scale information networks and do not yield to traditional
equation-based analysis

= Complex systems can be engineered or evolved

XX

=
\‘if’
f

\{.
/

K

X2

i
XXX

—

Infrastructure Computers Societies

= Fundamental basis for their intractability: Turing’s halting problem

= Once a system (whether designed with digital logic or otherwise) is equivalent

to a sufficiently powerful computer, its behavioral properties cannot be
predicted in the general case

= The digital cybersecurity problem illustrates this difficulty in its purest form

6

The complexity problem has its roots e
in theoretical computer science

= Theorem (Turing 1936, Rice 1953): No algorithm exists to predict
a priori the behavior of a generic information processing system
= j.e., such asystem is undecidable even if deterministic

= Practical significance: A real system, with a finite exponentially large number
of states but otherwise generic, is effectively undecidable — in particular,
simulation or testing cannot tell us all its possible behaviors

Euro MRC M- M+ -+

Nath 7 8 9
"% 5 |6

C 28 183
AC -

= We need to bound all possible behaviors to quantify safety and

security
7

The theory has direct engineering
implications

= A digital system created arbitrarily cannot be predicted or
bounded

= You have no idea how the system will respond to the vast number of
inputs you haven’t tested

= This explains why bugs and vulnerabilities are commonplace
= Once the state differs by even one bit from what you expected — due
to a mistake, a natural fault, or an attack — all bets are off
= We need ways to tame this “wild west” digital complexity

= We must design digital systems specifically for analyzability
and robustness

= Similar problems are faced in outside applications, but Sandia
faces them in extremes

= Extreme consequence, extreme environments, extreme scale
8

The solution space uses the
mathematics of complex systems

= Formal methods (reduced complexity)

= Automated reasoning about all possible behaviors within a model — widely
used in industry for critical digital devices

= Model checking, theorem proving
= Scaling limitations, though power and tractability have improved over
time
= Complex systems theory (structured complexity)
= Probabilistic analysis of response of networks to perturbations
= Biologically inspired architectures such as diversity
= Well suited to understand emergent system-level robustness, but only
sparingly applied to engineered digital systems
= |n both strategies, systems must be constrained to be analyzable

= |deal approach is to consciously design-in analyzability and robustness
along with functionality

9

Formal methods reason about earen
all possible digital behaviors

= Example: Can this 63-input logic circuit ever output TRUE?

" (b; XOR b,) AND (b, XOR b3) AND (b3 XOR by)
AND ... AND (bgy XOR bg3) AND (bgz XOR by)

= Exhaustive black-box testing:
= Try all 283 = 10 input values to conclude: no, never outputs TRUE

= Automated reasoning by a formal “satisfiability (SAT) solver”
that seeks a TRUE output (common off-the-shelf tool):
= Try by =TRUE: then b, = FALSE, ..., bg3 = TRUE, b, = FALSE: contradiction
= Try by = FALSE: then b, = TRUE, ..., bg3 = FALSE, b, = TRUE: contradiction

= This is a proof that no input can make the circuit output TRUE, based on
analyzing the circuit as a mathematical object

10
-

Work aims at “engineered trust” via e
formally informed design

Standard commercial practice: Formally informed practice:
Prove correctness of design Create provably correct design
’ : Increase proof tractability for

i highly stringent requirements

\\\
Impemenalon

“Self-organized criticality” is a simple
example of digital emergent behavior

= SOC (Baketal.1987)is
spontaneous development
of fractal phenomena with
power-law distributions

= Similar to thermodynamic
criticality but without tuning

= System shown is
“Sandbot”: cyber model of
coordinated malware

= |nspired by “sandpile

model”: physics-like cellular

automaton
= Sand is sprinkled randomly 8100 machines running Sandbot:
= Avalanches occur at all scales Each pixel is a single machine;

network storms appear in red

“Sandbots” communicate via standard

) e
protocols and obey simple rules
= Simple “botnet” is based on a Random
square lattice populated by bot timer increments

bot state

nodes

= Simple rules determine when a
bot communicates with its 4
neighbors

When state reaches 4,
bot communicates
with all 4 nearest
neighbors {tumble)
resetting its state to
zero

= Despite the model’s simplicity,
behavior at large scale is
unexpected and rich

= The model has been implemented
using emulation, in which a
computer uses “virtual machines”
to perform an extremely faithful
simulation of other computers

Bot increments state
when neighbors
avalanche

13

Robustness is key to understanding earon
systems with “organic” behavior

= Highly optimized tolerance (HOT, Carlson & Doyle 1999): Systems
designed or selected to perform well despite perturbations

= HOT systems exhibit power-law distributions but have organic
structure (not self-similar or fractal)

Fractal

= Adapted robustness to one set of perturbations induces extra
fragility to different perturbations

= |ndeed, rare but catastrophic failures are seen in highly
engineered/evolved systems
= Electrical blackouts, financial panics, epidemics, massive cyber attacks, etc.

14
-

Complexity theory shows ways to
address “whole system” robustness

7| Netora

= Cybersecurity vision: Create high-consequence digital systems in
new ways, so that they are analyzable
= Seek to understand computers as dynamical systems

= Toy example: “Growing” a digital circuit to add two 1-bit numbers —
a half adder

= There are many ways of composing logic gates to implement this
functionality

= Next slide shows two such “grown” (actually randomly sampled)
networks; each performs as a half adder when run for 20 steps
= Shown correctly adding 1 + 1 to get the binary result 10

= They also respond correctly to the other possible inputs

Step 0

Inputs

Outputs

16

Step 0

Inputs

Outputs

What distinguishes the two
implementations? Resilience

= Resilience of a digital model to bit errors can be assessed via
growth or damping of perturbations (“Lyapunov exponent”)

= Bit errors can represent breakdown of digital model, or effect of untested
states within the digital space

= Networks transition from stable to unstable based on connectivity and logic
(generalizing Kauffman 1969)

= Next slide: runs with 1% error rate per update
= States that deviate from the ideal run are outlined in red

= Network A has much less error in final output (greater resilience)
than network B — why?

= Here, average inputs per node (k) makes the difference

Step 0

Inputs

Outputs
(Average incorrect bits: 0.73)

k=15

Step 0

Inputs

Outputs
(Average incorrect bits: 0.10)

18

Example illustrates quantifying e
resilience implications of designs

—— 7] = Results for these
half-adder networks
can be obtained by
brute testing

1.00}

0.50+

= Systematic relations
to real-world design
parameters enable
assessing potential
catastrophic failures
too rare to be found

_ reliably through

k = 1.5 (A) testing

0.20¢

0.10 ¢

0.05} /

Average Incorrect Output Bits

0.02¢

0.001 0.005 0.010 0.050 0.100 0.500 1.000

Error Rate Per Gate Update 19

Complexity theory provides insight =

Laboratories
on real-world circuits
= “Influence” measure in BNs is a more precise generalization of
“inputs per node” (Seshadhri et al. 2011)
= |f Avg. Influence > 1 (supercritical), network is unstable
= |f Avg. Influence < 1 (subcritical), network is stable
= Example: Score processor shows signs of enhanced resilience —
consistent with its goals of analyzability and predictability
Influence distribution comparison
04 Critical -+- CORDIC core
Score is ' ritica ? —e— Score processor
subcritical £ | | threshdld .
(prototype = 3 I | le_| corDICis
analyzable S supercritical
processor S 02 o | 2 (typical
for Sandia 2 gl Bla off-the-shelf
applications) = 01 \/ circuit design)
P
0 0.5 1 15
influence
20

Area for research: What makes resilient
complex systems quantifiable?

),

= Smoothness (a.k.a. stability, subcriticality) makes a system:
= Predictable (you can extrapolate its behavior to a new situation)
= Resilient (it tends to maintain its behavior under minor faults)

= Evolvable (you can make small changes to it, and it remains usable)

= Smoothness of particular observables is common in physics

= Amid molecular chaos, continuum equations apply when we’re
concerned with thermodynamic (averaged) behavior

= Extend this to adaptive complex systems with respect to the behaviors
that are selected for? (These are typically not averaged behaviors)

= Ability to bound the effect of perturbations is crucial for:

= |nferring that a model will be predictive under conditions that differ
from those used to test it (V&V), and inferring how much the model
behavior may change due to variations in input parameters (UQ)

21

A lesson for complex systems that are
not resilient

= Beware of applying techniques that assume smoothness/
stability to complex system observables that have no reason
to be smooth/stable
= Could be garbage in, garbage out

= Today’s complex digital systems are not designed in a
thoroughly adaptive way, and lack inherent stability
= Hence, highly susceptible to failures and attacks
= By the same token, also difficult to model predictively
= The difficulty of V&V’ing cyber(-physical) models and the
difficulty of securing cyber(-physical) systems are two sides of
the same coin

= The cyber V&V problem is the cybersecurity problem — both need to

be solved together
22

Complexity theory enables analysis of e
the consequences of hardware errors

= Digital hardware is generally unpredictable
= Even when it’s working as designed
= Complexity can exceed the reach of formal methods

= But doubly so when hardware is compromised
= Due to out-of-spec extreme conditions

= Radiation, thermal, intentional physical subversion
= Most tools and applications assume perfect hardware

= Conventional formal methods prove properties for logic working as designed

= High-consequence systems require efforts to assure safe behavior
in abnormal physical environments
= Especially when coupled to vast digital state spaces in a cyber-physical system
= Example: Mixed-signal simulation can elucidate the digital imprint
(e.g., bit flip pattern) of a physical insult (e.g., radiation) on a circuit
= Using analog model for the part of the circuit subjected to the insult

23

Formal analysis can incorporate eare
a digital upset model

= Exhaustively prove correct function of example half-adder
networks using open-source model checker NuSMV

tfern02 := (xfer02 >> (n0l1l :: n03)) & Oub4_0001;
LTLSPEC F ((clock = 20) & (n18 = (n00 & n01)));

= Currently using simple upset assumption

= Allow any single bit flip within a range of time steps

= To be generalized by extracting upset models from physical simulation
= |nitial formal results confirm insights from complexity theory

= Chaotic network is susceptible: Corruption can arise from any time step

= Quiescent network can be corrupted only if upset occurs in the last 5 of
20 time steps: self-healing otherwise

24

Abstraction/composition is key to =
analyzing large cyber-physical systems

= Abstracting continuous equations into digital representation

= Abstracting detailed digital representation into an over-
approximation that still permits proofs of key properties

o
et S

Continuous Digitized Abstracted

= Composition that preserves formal safety/security properties
admits a divide-and-conquer approach

“Diverse redundancy” is a complex)
systems technique for trust

= Use a voting system with memb~re Av~raen These
from a set of implementations

= |nput processed by each in parallel

= Qutputs compared to determine
response

= Atype of “moving target”
= Keep intended functionality

while varying vulnerabilities
over space and time

= Similar to redundancy for
physical fault tolerance

= Diversity leverages a simple “trust anchor” (the voting unit)
for cybersecurity benefits at the complex system level

Analyzable statistics arise from an
ensemble of undecidable programs

7| Netora

= For a specific feature set, there is a probability P that a particular
member of the set of implementations will be susceptible to
vulnerability v. For a voting system of size N:
= The probability of success for the attacker is (P)2
= The attacker “work” is the expected number of tries: (1/P)V/2
= The work for defender is the cost of producing N implementations: oc N

“Genetic programming” can produce e
diverse digital implementations

= Example: “Grow” realistically imperfect circuits represented as BNs

= Simple BN specification for “string recognizer”: Output 1 for a
particular input bit combination (“password”), O for all other inputs

= Faults are inputs other
than password that
produce 1

= Use “feedforward” BNs
with a modular structure
that can be recombined
genetically, to find many
circuits that perform well
(but not perfectly) in

meeti Ng the SpeCification Input Layer 1 &LayLlr'E ' Layer N Output:
Layer [Layer

| Possible crossover point
28

String recognizer example illustrates
role of testing vs. formal methods

= Most error rates for “grown” recognizers < 1%
= Recognizing bit-strings of up to 64 bits long

= Some low bit length (8 bit) strings have zero error rates and are
proved by NuSMV to be perfect

The NuSMV model checker itself has perfect logical
consistency for every circuit tested (> 7000)
= All recognizer circuits tested to have errors are detected faulty
= Counterexample emitted by NuSMV proves that this is so

= All perfect circuits (whether grown or human made) are proven
perfect and have no errors in testing

= Even circuits that have O tested errors are shown to be faulty by the
model checker

= Examples of 32 bit recognizers show 0 errors for 1000 random tests, yet
are shown to be flawed by model checking

29
-

Complexity measures suggest
targeted fuzzing strategies

th

= Evolved and designed systems have coherence that makes it

useful to fuzz in “simpler” spaces

= Example: Fuzzing string recognizer with patterns close to gold

string is more likely to find faults

c®) = More generally: Inputs that

@ asier to find
more serious)

ogs. Harder to find
Y (less serious)

attacker)

have a simple description
(relative to available
information) should be
targeted for coverage because
they form a smaller “corner”
space (also more attractive to

Formal analysis of diverse string)

Laboratories
recognizers exposes voting benefit
Model checking of “grown” string-recognizer voting systems
1
- 0.8
ﬁ
- 06 -
4 15 versions
g_ e 5 VETSIONS
rg 04 w3 yEISiONS
% e | YpEFS IO
[1 02
0
4 6 8 10 12

Bit-string length
31

Sandia

Supplemental slides o,

32

Need to assure trust for -
high-consequence information systems

= As high-consequence systems
incorporate digital components,
exhaustive testing/simulation

becomes infeasible Simple calculator has more possible states
than number of particles in known universe

= Assessing trust in such systems is vital for Sandia missions

Nuclear weapons (NW) Cyber/computing Energy infrastructure

Need to verify increasingly complex e
behavioral requirements

= Analyses often must address system reliability, safety, and
security in both nominal and extreme physical environments

= Most effort in physical NW design is for extreme environments

= All the more need to address this issue when it’s coupled to a vast
digital state space — yielding a cyber-physical system

= Formal methods and complexity theory can help address the
design space of cyber-physical information systems, verifying
requirements infeasible to cover by testing/simulation
= Example coming up:
Modeling the digital
response of electronics

to radiation-induced
upsets

Need to verify increasingly complex

behavioral requirements

Requirements
Complexity

th

Certain devices inherently lack
the complexity needed for
certain tasks

4/‘9!‘/‘ ¢ r - e.g.,arelay cannot
° Q/S(/ implement a power grid
G .
7% by, | 0 R
/019// l/e/
>
19&0
OCQ/
/. R Ny .
0 I
¢, .
6//&\& A device needs only a
9’&@ 1 R AMiceinn N23ade B given amount of design
complexity to implement
47@0;_) a set of requirements
C, T ‘ °
‘9 : @ !
/ Formal \\ Complexity
Me;hods C Theiory
Al S Commercial Tools S NS oo
Logarithmic scale of: < Complexity
- System requirements
(y-axis) YRR s W, M
. (7 / (s
- Dewce/system used to % e e ¢ 47 h’o%
implement requirements V3

(x-axis)

Analysis scalability is enhanced by e
coupling analog and digital models

= Goal: Understand the net effect of an out-of-nominal event as
an abnormal transition (upset) in a digital state space

Q

D D’
010011011. .. 010000011. ..

= Simulate this transition — then use, e.g., a digital formal model
to evaluate its consequences exhaustively

= Analog simulations of many different upsets can leverage HPC
(embarrassingly parallel)

Digital upsets can be generated =
from physics

= Proof of concept uses a toy “half adder” circuit
= |ntroduce “swappable” analog model for one logic element

Digital/analog coupled subsystem

(a) Digital design; VHDL

Io -
Ii U

0V Source

|
(d) Habanero digital/analog interface

37

A toy “half adder” circuit illustrates
generating digital upsets from physics

Sandia
m National
Laboratories

= |n Habanero, simulate a single-event upset by:
= Swapping in an analog model for a selected logic element
= Applying a photocurrent (using an available perturbation in Xyce)
= Re-digitizing the resulting state — output errors are seen

L Baszelinew=0
EF Curzar-Baselinew=0

Mame « Cursar =

)y Bazelinew=0
EF| Cursor-Baseling =0

klame = Cursor =

Securing an arbitrary code is not earen
just hard; it’s impossible

= Restated: Generic code has vulnerabilities that are unprovable
and unknowable
= Not statistical, even in principle
= Turing completeness demands that a generic code is undecidable

Program

ulnerabilities

= So now what?

Complexity makes e

cyber threats asymmetric
= Developer, user, and attacker all
don’t know where the
Bad GUM needs vulnerabilities are (undecidable)
to find ' = Worse, attacker may have planted

a vulnerability

one.

= Asymmetry: One vulnerability
compromises the whole code
N) .
—= Developer has to find all of them

o —,— (impossible in general)
You have to i |
= No one can guarantee “this code is
find them all clean” or even quantify

improvement

Complexity is a fact of “life”) .

= Biological phenomena are a prototype and inspiration for
many complex domains

= Life involves a large chemical regulatory network

Eukaryotic
cell-cycle
regulation

-
-

= “Game of Life” model is based on population dynamics
= Bio concepts pervade computing (viruses, mutations)

= Biology typifies complex couplings of manmade systems —
economy, energy, cybersecurity

Observation #1: A program’s

7| Netora

feature set has many implementations

Implementations

e

.% Feature

Set

Input/Output

Feature set is defined by a test
suite

Test suite verifies that an
implementation conforms to
desired functionality

Test suite is a sample; cannot
realistically cover all possible
input/outputs

Vulnerabilities arise from
untested input/outputs

Any feature set has infinitely
many implementations

= Finite large number if size is
bounded

Observation #2: Ensemble of instances
permits the formulation of statistics

= Assume: Multiple implementations randomize security holes

= Ensemble of multiple-version, “randomized” undecidable codes allows
formation of security improvement statistics

Monoclonal

Attacke/ Diverse

Attacker

High-reliability systems can be
constructed from “N-version software”

= Space Shuttle: 4 computers, identical
software, different hardware, same design
= Focus is on hardware faults
= Similarly, software redundancy used mostly
for control systems up to now

= N-version software: Multiple versions implemented to the same feature
set by different developers

= Models of N-version software view the control system as a
stochastic process that walks the code graph of the software

= Control system takes the place of a “fuzzer”

Similarly, N-version software can
quantifiably improve cybersecurity

7| Netora

= (Clear generalization of N-version reliability to cybersecurity ...

Miss
= ... butthere are important differences requiring enabling
technology

= Compromised versions must be removed and replaced

= Hand-made new versions are time-consuming and expensive
= May repeat previous mistakes

A simple example: Diverse software
can be constructed from components

-

= Component-based codes
automatically conform to a
feature set if the constituent
components conform to their
individual feature sets
(semantic interfaces)

= Multiple implementations of the
code amount to multiple
versions of components

= Components can be mixed and
matched to form a
combinatorial number of code
implementations

Living systems adapt to cope

) e,
with unknowable attacks
G@m@m@ N‘!‘@“‘@S = A Component type IS

B N

- SE
SR

B

i a = B

similar to a gene;
component
implementations are
similar to alleles of a
gene

Reassemble alleles into individuals) fe,,

= Different alleles can be
- i assembled into new
i individuals that have
“randomized” security
holes

= New individuals are
" differently vulnerable and
potentially adaptive

. = Excess functionality and
' planted vulnerabilities can
be “annealed” away

Compare responses from individuals .

= Now different individuals
will produce the same
feature set but react

differently to attacks

Evolve new and more robust =,
individuals

= Eliminate the one with
. the differentiated
response

