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What makes cybersecurity hard?

 We need to model cyber systems to say anything scientific 
about them, but models of digital logic behave differently 
from most models used in science

 Or to put it another way: Cybersecurity is a complex systems 
problem

 Not just digital logic – also need to model:
 Human users and attackers

 Supply chain (how the system came to be)

 Physical infrastructure that the system interacts with (e.g., SCADA)

 We consider “trust” as a generalization of security that 
includes potential attacks during the creation of the system 
(e.g., planted vulnerabilities)
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 Cyber systems are both unpredictable and deterministic

 Hard, at first, to wrap your head around

 The same input to a generic program always outputs the same result

 A one-bit variation in the program, or just the input to the program, 
produces wildly different results (Lyapunov exponent > 0) 
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Chaotic dynamical system Generic digital system

Cyber: inherently stable to < 1 bit,
usually chaotic to > 1 bit perturbations



Finding the right approach for the job

 Sandia is interested in cyber systems broadly, but especially in 
digital controllers for high-consequence physical systems

 There are at least three levels of scientific inquiry on the security of 
cyber systems:
 Simulation and testing of particular (existing or proposed) cyber systems

 Explores behaviors one at a time; by itself can’t assess security quantitatively

 Mathematical analysis of particular (existing or proposed) cyber systems
 Seeks to establish security as a quantitative global property of a model

 Well-established example: mathematical proofs of cryptographic security

 Design of new cyber systems that are “secure by construction”
 Creates a system in a mathematically constrained fashion so the desired 

properties are built-in

 The adequacy of the model (verification and validation) is a 
perennial problem!
 The most rigorous analysis may be irrelevant if an attacker can operate 

outside the model (see $5 wrench)
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Economies of scale in computing:
Friend and enemy

 Enormously complex hardware and software is created at enormous cost

 Cost is recouped by stamping out millions of identical copies

 A kid in his basement can make it do something interesting but unknown 
(unpredictable).  He can be certain he can do the same thing to your 
desktop PC (deterministic)

 In the general case, all digital designs share these problems

5

Solution:  Make the design less general, more analyzable



Digital systems are prototypical
of broader complex systems

 One way of defining “complex” systems: those that behave as 
large-scale information networks and do not yield to traditional 
equation-based analysis
 Complex systems can be engineered or evolved

 Fundamental basis for their intractability: Turing’s halting problem
 Once a system (whether designed with digital logic or otherwise) is equivalent 

to a sufficiently powerful computer, its behavioral properties cannot be 
predicted in the general case

 The digital cybersecurity problem illustrates this difficulty in its purest form

Infrastructure Computers Societies
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The complexity problem has its roots
in theoretical computer science

 Theorem (Turing 1936, Rice 1953): No algorithm exists to predict
a priori the behavior of a generic information processing system
 i.e., such a system is undecidable even if deterministic

 Practical significance: A real system, with a finite exponentially large number 
of states but otherwise generic, is effectively undecidable – in particular, 
simulation or testing cannot tell us all its possible behaviors

 We need to bound all possible behaviors to quantify safety and 
security

2300 states
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The theory has direct engineering
implications

 A digital system created arbitrarily cannot be predicted or 
bounded
 You have no idea how the system will respond to the vast number of 

inputs you haven’t tested

 This explains why bugs and vulnerabilities are commonplace

 Once the state differs by even one bit from what you expected – due 
to a mistake, a natural fault, or an attack – all bets are off

 We need ways to tame this “wild west” digital complexity

 We must design digital systems specifically for analyzability 
and robustness

 Similar problems are faced in outside applications, but Sandia 
faces them in extremes
 Extreme consequence, extreme environments, extreme scale
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The solution space uses the
mathematics of complex systems

 Formal methods (reduced complexity)

 Automated reasoning about all possible behaviors within a model – widely 
used in industry for critical digital devices

 Model checking, theorem proving

 Scaling limitations, though power and tractability have improved over 
time

 Complex systems theory (structured complexity)

 Probabilistic analysis of response of networks to perturbations

 Biologically inspired architectures such as diversity

 Well suited to understand emergent system-level robustness, but only 
sparingly applied to engineered digital systems

 In both strategies, systems must be constrained to be analyzable

 Ideal approach is to consciously design-in analyzability and robustness 
along with functionality
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Formal methods reason about
all possible digital behaviors

 Example: Can this 63-input logic circuit ever output TRUE?

 (b1 XOR b2) AND (b2 XOR b3) AND (b3 XOR b4)
AND … AND (b62 XOR b63) AND (b63 XOR b1)

 Exhaustive black-box testing:
 Try all 263 ≈ 1019 input values to conclude: no, never outputs TRUE

 Automated reasoning by a formal “satisfiability (SAT) solver” 
that seeks a TRUE output (common off-the-shelf tool):
 Try b1 = TRUE: then b2 = FALSE, …, b63 = TRUE, b1 = FALSE: contradiction

 Try b1 = FALSE: then b2 = TRUE, …, b63 = FALSE, b1 = TRUE: contradiction

 This is a proof that no input can make the circuit output TRUE, based on 
analyzing the circuit as a mathematical object
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Work aims at “engineered trust” via 
formally informed design
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Increase proof tractability for
highly stringent requirements



“Self-organized criticality” is a simple 
example of digital emergent behavior

 SOC (Bak et al. 1987) is 
spontaneous development 
of fractal phenomena with 
power-law distributions
 Similar to thermodynamic 

criticality but without tuning

 System shown is 
“Sandbot”: cyber model of 
coordinated malware

 Inspired by “sandpile 
model”: physics-like cellular 
automaton
 Sand is sprinkled randomly

 Avalanches occur at all scales
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8100 machines running Sandbot: 
Each pixel is a single machine;
network storms appear in red



“Sandbots” communicate via standard 
protocols and obey simple rules

 Simple “botnet” is based on a 
square lattice populated by bot 
nodes

 Simple rules determine when a 
bot communicates with its 4 
neighbors

 Despite the model’s simplicity, 
behavior at large scale is 
unexpected and rich

 The model has been implemented 
using emulation, in which a 
computer uses “virtual machines” 
to perform an extremely faithful 
simulation of other computers

13



Robustness is key to understanding 
systems with “organic” behavior

 Highly optimized tolerance (HOT, Carlson & Doyle 1999): Systems 
designed or selected to perform well despite perturbations

 HOT systems exhibit power-law distributions but have organic 
structure (not self-similar or fractal)

 Adapted robustness to one set of perturbations induces extra 
fragility to different perturbations

 Indeed, rare but catastrophic failures are seen in highly 
engineered/evolved systems
 Electrical blackouts, financial panics, epidemics, massive cyber attacks, etc.
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Complexity theory shows ways to
address “whole system” robustness

 Cybersecurity vision: Create high-consequence digital systems in 
new ways, so that they are analyzable
 Seek to understand computers as dynamical systems

 Toy example: “Growing” a digital circuit to add two 1-bit numbers –
a half adder

 There are many ways of composing logic gates to implement this 
functionality

 Next slide shows two such “grown” (actually randomly sampled) 
networks; each performs as a half adder when run for 20 steps
 Shown correctly adding 1 + 1 to get the binary result 10

 They also respond correctly to the other possible inputs
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What distinguishes the two 
implementations? Resilience

 Resilience of a digital model to bit errors can be assessed via 
growth or damping of perturbations (“Lyapunov exponent”)
 Bit errors can represent breakdown of digital model, or effect of untested 

states within the digital space

 Networks transition from stable to unstable based on connectivity and logic 
(generalizing Kauffman 1969)

 Next slide: runs with 1% error rate per update
 States that deviate from the ideal run are outlined in red

 Network A has much less error in final output (greater resilience) 
than network B – why?
 Here, average inputs per node (k) makes the difference
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Example illustrates quantifying
resilience implications of designs

 Results for these 
half-adder networks 
can be obtained by 
brute testing

 Systematic relations 
to real-world design 
parameters enable 
assessing potential 
catastrophic failures 
too rare to be found 
reliably through 
testing
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Complexity theory provides insight
on real-world circuits

 “Influence” measure in BNs is a more precise generalization of 
“inputs per node” (Seshadhri et al. 2011)
 If Avg. Influence > 1 (supercritical), network is unstable

 If Avg. Influence < 1 (subcritical), network is stable

 Example: Score processor shows signs of enhanced resilience –
consistent with its goals of analyzability and predictability
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Area for research: What makes resilient 
complex systems quantifiable?

 Smoothness (a.k.a. stability, subcriticality) makes a system:
 Predictable (you can extrapolate its behavior to a new situation)

 Resilient (it tends to maintain its behavior under minor faults)

 Evolvable (you can make small changes to it, and it remains usable)

 Smoothness of particular observables is common in physics
 Amid molecular chaos, continuum equations apply when we’re 

concerned with thermodynamic (averaged) behavior

 Extend this to adaptive complex systems with respect to the behaviors 
that are selected for? (These are typically not averaged behaviors)

 Ability to bound the effect of perturbations is crucial for:
 Inferring that a model will be predictive under conditions that differ

from those used to test it (V&V), and inferring how much the model 
behavior may change due to variations in input parameters (UQ)
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A lesson for complex systems that are
not resilient

 Beware of applying techniques that assume smoothness/
stability to complex system observables that have no reason 
to be smooth/stable
 Could be garbage in, garbage out

 Today’s complex digital systems are not designed in a 
thoroughly adaptive way, and lack inherent stability
 Hence, highly susceptible to failures and attacks

 By the same token, also difficult to model predictively

 The difficulty of V&V’ing cyber(-physical) models and the 
difficulty of securing cyber(-physical) systems are two sides of 
the same coin
 The cyber V&V problem is the cybersecurity problem – both need to 

be solved together
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Complexity theory enables analysis of
the consequences of hardware errors

 Digital hardware is generally unpredictable
 Even when it’s working as designed

 Complexity can exceed the reach of formal methods

 But doubly so when hardware is compromised

 Due to out-of-spec extreme conditions

 Radiation, thermal, intentional physical subversion

 Most tools and applications assume perfect hardware
 Conventional formal methods prove properties for logic working as designed

 High-consequence systems require efforts to assure safe behavior 
in abnormal physical environments
 Especially when coupled to vast digital state spaces in a cyber-physical system

 Example: Mixed-signal simulation can elucidate the digital imprint 
(e.g., bit flip pattern) of a physical insult (e.g., radiation) on a circuit
 Using analog model for the part of the circuit subjected to the insult
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Formal analysis can incorporate
a digital upset model

 Exhaustively prove correct function of example half-adder 
networks using open-source model checker NuSMV

 Currently using simple upset assumption
 Allow any single bit flip within a range of time steps

 To be generalized by extracting upset models from physical simulation

 Initial formal results confirm insights from complexity theory
 Chaotic network is susceptible: Corruption can arise from any time step

 Quiescent network can be corrupted only if upset occurs in the last 5 of 
20 time steps: self-healing otherwise

tfern02 := (xfer02 >> (n01 :: n03)) & 0ub4_0001;
...

LTLSPEC F  ((clock = 20) & (n18 = (n00 & n01)));
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 Abstracting continuous equations into digital representation

 Abstracting detailed digital representation into an over-
approximation that still permits proofs of key properties

 Composition that preserves formal safety/security properties 
admits a divide-and-conquer approach

Continuous Digitized Abstracted

Abstraction/composition is key to 
analyzing large cyber-physical systems
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“Diverse redundancy” is a complex 
systems technique for trust

 Use a voting system with members drawn
from a set of implementations
 Input processed by each in parallel

 Outputs compared to determine
response

 A type of “moving target”

 Keep intended functionality
while varying vulnerabilities
over space and time

 Similar to redundancy for
physical fault tolerance

 Diversity leverages a simple “trust anchor” (the voting unit) 
for cybersecurity benefits at the complex system level
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Analyzable statistics arise from an 
ensemble of undecidable programs

 For a specific feature set, there is a probability Pv that a particular 
member of the set of implementations will be susceptible to 
vulnerability v.  For a voting system of size N:
 The probability of success for the attacker is (Pv)

N/2

 The attacker “work” is the expected number of tries: (1/Pv)
N/2

 The work for defender is the cost of producing N implementations:  N

27
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“Genetic programming” can produce 
diverse digital implementations

 Example: “Grow” realistically imperfect circuits represented as BNs

 Simple BN specification for “string recognizer”: Output 1 for a 
particular input bit combination (“password”), 0 for all other inputs
 Faults are inputs other

than password that
produce 1

 Use “feedforward” BNs
with a modular structure
that can be recombined
genetically, to find many
circuits that perform well
(but not perfectly) in
meeting the specification
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String recognizer example illustrates
role of testing vs. formal methods

 Most error rates for “grown” recognizers < 1%
 Recognizing bit-strings of up to 64 bits long

 Some low bit length (8 bit) strings have zero error rates and are 
proved by NuSMV to be perfect

 The NuSMV model checker itself has perfect logical 
consistency for every circuit tested (> 7000)
 All recognizer circuits tested to have errors are detected faulty

 Counterexample emitted by NuSMV proves that this is so

 All perfect circuits (whether grown or human made) are proven 
perfect and have no errors in testing

 Even circuits that have 0 tested errors are shown to be faulty by the 
model checker

 Examples of 32 bit recognizers show 0 errors for 1000 random tests, yet 
are shown to be flawed by model checking
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Complexity measures suggest
targeted fuzzing strategies

 Evolved and designed systems have coherence that makes it 
useful to fuzz in “simpler” spaces

 Example: Fuzzing string recognizer with patterns close to gold 
string is more likely to find faults

 More generally: Inputs that 
have a simple description 
(relative to available 
information) should be 
targeted for coverage because 
they form a smaller “corner” 
space (also more attractive to 
attacker)

Simple description

Complex description
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Formal analysis of diverse string 
recognizers exposes voting benefit
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Supplemental slides
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Need to assure trust for
high-consequence information systems

 As high-consequence systems
incorporate digital components,
exhaustive testing/simulation
becomes infeasible

 Assessing trust in such systems is vital for Sandia missions
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Need to verify increasingly complex 
behavioral requirements

 Analyses often must address system reliability, safety, and 
security in both nominal and extreme physical environments

 Most effort in physical NW design is for extreme environments
 All the more need to address this issue when it’s coupled to a vast 

digital state space – yielding a cyber-physical system

 Formal methods and complexity theory can help address the 
design space of cyber-physical information systems, verifying 
requirements infeasible to cover by testing/simulation

 Example coming up:
Modeling the digital
response of electronics
to radiation-induced
upsets
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Need to verify increasingly complex 
behavioral requirements
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Analysis scalability is enhanced by
coupling analog and digital models

 Goal: Understand the net effect of an out-of-nominal event as 
an abnormal transition (upset) in a digital state space

 Simulate this transition – then use, e.g., a digital formal model 
to evaluate its consequences exhaustively

 Analog simulations of many different upsets can leverage HPC 
(embarrassingly parallel)
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Digital upsets can be generated
from physics

 Proof of concept uses a toy “half adder” circuit

 Introduce “swappable” analog model for one logic element
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A toy “half adder” circuit illustrates
generating digital upsets from physics

 In Habanero, simulate a single-event upset by:
 Swapping in an analog model for a selected logic element

 Applying a photocurrent (using an available perturbation in Xyce)

 Re-digitizing the resulting state – output errors are seen
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 Restated: Generic code has vulnerabilities that are unprovable 
and unknowable
 Not statistical, even in principle

 Turing completeness demands that a generic code is undecidable

 So now what?

Securing an arbitrary code is not
just hard; it’s impossible



 Developer, user, and attacker all 
don’t know where the 
vulnerabilities are (undecidable)

 Worse, attacker may have planted 
a vulnerability

 Asymmetry: One vulnerability 
compromises the whole code
 Developer has to find all of them 

(impossible in general)

 No one can guarantee “this code is 
clean” or even quantify 
improvement

Complexity makes
cyber threats asymmetric



Complexity is a fact of “life”

 Biological phenomena are a prototype and inspiration for 
many complex domains
 Life involves a large chemical regulatory network

 “Game of Life” model is based on population dynamics

 Bio concepts pervade computing (viruses, mutations)

 Biology typifies complex couplings of manmade systems –
economy, energy, cybersecurity

Eukaryotic 
cell-cycle 
regulation



 Feature set is defined by a test 
suite

 Test suite verifies that an 
implementation conforms to 
desired functionality

 Test suite is a sample; cannot 
realistically cover all possible 
input/outputs

 Vulnerabilities arise from 
untested input/outputs

 Any feature set has infinitely 
many implementations
 Finite large number if size is 

bounded

Observation #1: A program’s
feature set has many implementations



 Assume: Multiple implementations randomize security holes

 Ensemble of multiple-version, “randomized” undecidable codes allows 
formation of security improvement statistics

Observation #2: Ensemble of instances 
permits the formulation of statistics



 Space Shuttle: 4 computers, identical 
software, different hardware, same design
 Focus is on hardware faults

 Similarly, software redundancy used mostly 
for control systems up to now
 N-version software: Multiple versions implemented to the same feature 

set by different developers

 Models of N-version software view the control system as a 
stochastic process that walks the code graph of the software
 Control system takes the place of a “fuzzer”

High-reliability systems can be
constructed from “N-version software”



 Clear generalization of N-version reliability to cybersecurity …

 … but there are important differences requiring enabling 
technology
 Compromised versions must be removed and replaced

 Hand-made new versions are time-consuming and expensive

 May repeat previous mistakes

Similarly, N-version software can 
quantifiably improve cybersecurity



 Component-based codes 
automatically conform to a 
feature set if the constituent 
components conform to their 
individual feature sets 
(semantic interfaces)
 Multiple implementations of the 

code amount to multiple 
versions of components

 Components can be mixed and 
matched to form a 
combinatorial number of code 
implementations

A simple example: Diverse software
can be constructed from components



 A component type is 
similar to a gene; 
component 
implementations are 
similar to alleles of a 
gene

Living systems adapt to cope
with unknowable attacks



Reassemble alleles into individuals

 Different alleles can be 
assembled into new 
individuals that have 
“randomized” security 
holes

 New individuals are 
differently vulnerable and 
potentially adaptive

 Excess functionality and 
planted vulnerabilities can 
be “annealed” away



Compare responses from individuals

 Now different individuals 
will produce the same 
feature set but react 
differently to attacks



 Eliminate the one with 
the differentiated 
response

Evolve new and more robust
individuals


