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Abstract—Distributed control compensation based on local and
remote sensor feedback can improve small-signal stability in
large distributed systems, such as electric power systems. Long
distance remote measurements, however, are potentially subject
to relatively long and uncertain network latencies. In this work,
the issue of asymmetrical network latencies is considered for an
active damping application in a two-area electric power system.
The combined effects of latency and gain are evaluated in time
domain simulation and in analysis using root-locus and the
maximum singular value of the input sensitivity function. The
results aid in quantifying the effects of network latencies and
gain on system stability and disturbance rejection.

Index Terms—Inter-area oscillations, damping control, small-
signal stability, time delay, communication latencies

I. INTRODUCTION

Power systems that are sparsely connected, have long trans-
mission lines, and/or are heavily loaded are often affected
by oscillations that limit their power transfer capabilities.
These oscillations are the result of energy swing exchanges
between groups of generators and are referred to as inter-area
oscillations or modes. Adequate damping of these swings is
critical to the performance and security of a power system.

Traditionally, damping of inter-area oscillations is carried
out by attaching local controllers to the generating units that
have the greatest controllability of the mode. Power system
stabilizers (PSSs) are the most widely used type of (local)
controller deployed towards that end. In addition to PSSs, other
power system components can be used to provide damping to
inter-area modes, such as Thyristor-controller Series Compen-
sators (TCSCs) [1]–[3], Static Var Compensators (SVCs) [2],
[4] and energy storage [5].

The damping of these oscillations using system-wide infor-
mation has also been investigated through Wide Area Damping
Control (WADC) schemes using different power system com-
ponents as actuators for these control strategies. PSSs with
remote signals have been studied in [6] and WADC using wind
generators in [7]. Because power systems subject to inter-area
power swings cover large geographic areas, the use of system-
wide information requires robust communication networks.
Even if the communication channels used for transmitting
the information needed for the wide-area control strategy are
completely reliable, the information being transmitted can still
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be subject to high communication latencies. The study of the
impact these latencies have on the dynamics of the power
system is critical for an adequate wide-area control design.
The works in [8], [9] show the effect that individual latencies
have on power system damping and frequency controllers.

In this paper, a two-area power system subject to inter-
area oscillations is stabilized with a proportional damping
controller that uses wide-area measurement feedback. This
compensator uses two signals that are subject to different
and independent latencies. This paper analyzes the two area
system as a Multiple Input Multiple Output (MIMO) system
and studies the effect that independent time delays have on the
stability of the system. A root-locus approach, where latencies
are estimated using a Padé approximation is used towards that
goal. Results show that larger time delays can destabilize the
system if they occur simultaneously in both measurements.
This work also studies the impact that communication la-
tencies have on the sensitivity of the system with respect to
load disturbances. This analysis was performed by assessing
variations in the largest peak of the maximum singular value.
Time domain simulations are also presented to corroborate the
results of the root-locus approach and the sensitivity analysis.

The remainder of this paper is organized as follows. Sec-
tion II introduces the two-area power system and its describing
equations. Section III analyses the effect that communication
latencies and the proportional gain of the controller have
on the stability of the system and its ability to reject load
disturbances. Section IV presents time domain simulations and
finally Section V outlines the conclusions of the work.

II. POWER SYSTEM MODEL

The plant model used in this research is a linearized version
of a two-area power system and is shown in Fig. 1 [10].
The model has an undamped inter-area oscillation of 0.24
Hz. Each area of the system is composed of a turbine and
a governor, represented by Ci(s), and a block representing
the dynamics of the inertia and load, denoted Gi(s). The two
areas are linked together by the synchronizing torque, a term
called κ, whose value depends on the power transfer between
the areas and the equivalent impedance between them. The
synchronizing torque determines the ability of the system to
keep in synchronism after a disturbance and tends to decrease
with greater power transfer. Lower κ values mean the system
has less stability robustness to disturbances. The inputs ∆PL1

and ∆PL2 represent disturbances (imbalances in the load
and/or generation) in each area of the system. The system
also has one High Voltage Direct Current (HVDC) line linking
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Fig. 1. Linear model of a two-area power system (adapted from [10]).

the two areas that is represented by the two power injections:
∆PD1 and ∆PD2 in Area 1 and Area 2 respectively. Because
of the nature of an HVDC link, in which power drained in
one end is the opposite of the power injected at the other end
(neglecting losses), ∆PD1 is always the negative of ∆PD2. In
this work a proportional control of these HVDC injections is
used to stabilize the system. The control law for each injection
is

PD1(t) = −Kd(f1(t− T1) − f2(t− T2)) (1)
PD2(t) = −PD1(t) = Kd(f1(t− T1) − f2(t− T2)) (2)

Notice that the controller uses two signals that are subject
to two different communication latencies: f1(t) which is the
frequency in area 1 and is subject to a delay of T1 and f2(t)
which is the frequency in area 2 with a latency of T2. A
controller of these characteristics has been proposed for the
WECC system [11].

A. Frequency Domain Description

The system in Fig. 1 can also be represented by the
schematic diagram shown in Fig. 2, with r = 0 and the
load changes in both areas represented as a vector ∆PL =
[∆PL1,∆PL2]T of input disturbances. The output is defined
as the vector of frequencies at each area ∆ω = [∆ω1,∆ω2]T.
In this case, the two dimensional controller is represented as
a 2 × 2 matrix K whose components are

K11 = −Kde
−T1s K12 = Kde

−T2s

K21 = Kde
−T1s K22 = −Kde

−T2s

JK
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Fig. 2. Control loop schematic of the system in Fig. 1.

and the plant to be controlled, that is the two-area power,
is expressed by a matrix noted J whose components are
expressed as

J11 =
−L22G1

L12L21 − L22L11
J12 =

−L12G2

L12L21 − L22L11
(3)

J21 =
−L21G1

L12L21 − L22L11
J22 =

−L11G2

L12L21 − L22L11
(4)

where

L11 = 1 +
G1T

s
+
G1C1

R1
L12 =

G1T

s
(5)

L21 =
G2T

s
L22 = 1 +

G2T

s
+
G2C2

R2
(6)

The plant and controller relationships are described with the
equations ∆PD = K∆ω and ∆ω = J∆PP . The input-output
relationship of the MIMO system can then be expressed as

∆ω = (I− JK)−1J∆PL (7)

B. Input Sensitivity Analysis

The system in Fig. 2, with r = 0 can also be used to
analyze the effect that disturbances ∆PL have on the input
of the plant ∆PP . In particular, it can be shown that the
relationship between the input to the plant, ∆PP , and the input
disturbances, ∆PL, is

∆PP = (I−KJ)−1∆PL (8)

where (I−KJ)−1 = Si is defined as the input sensitivity [12].
To reduce the effects of disturbances into the plant, it is desired
that the gain from ∆PL to ∆PP , represented by Si, to be
small for all conditions. The worst-case scenario of gain is
represented by the maximum singular value σ(Si) of the input
sensitivity [12]. For a given stabilizing controller K(s), this
work assesses the effects that communication latencies have
on the maximum singular value of Si.

III. EFFECTS OF DIFFERENT TIME DELAYS ON SYSTEM
STABILITY AND INPUT SENSITIVITY

This section presents the effect that variations in the control
proportional gain (Kd), and the latencies in the frequency
measurements (T1, T2) have on the stability of the inter-area
oscillations of the system. It then outlines how the sensitivity
to disturbances is affected by the control gains as well as
the individual communication latencies. Although latencies in
practice are likely to be subject to randomness and jitter, the
impact of stochastic time delays is beyond the scope of this
paper.

A. Inter-area mode variation as local and remote signal time
delay increases

The system in Fig. 1 can be described using a state
space representation provided that the latencies (represented
by exponential functions) are approximated by states using a
Padé approximation. The stability of the system is then defined
by the eigenvalues of the state matrix. In this paper, a Padé
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approximation of order 4 was used to represent latencies in
the state space domain1.

In the absence of a controller (Kd = 0) the two-area system
in Fig. 1 is unstable and has an inter-area mode located at
0.06848 ± j1.48. Considering the case where there are no
communication latencies in the system, i.e. T1 = T2 = 0, then
the system becomes symmetric and increases in Kd stabilize
it. The blue line (circle marker) in Fig. 3 (a) shows this effect
when Kd is increased from 0 to 10. Fig. 3 (a) shows the vari-
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Fig. 3. Inter-area mode variations as Kd increases.

ations in the inter-area mode of the system as Kd is increased
from 0 to 10 for different values of latencies when the latencies
for both frequency measurements are symmetrical. Fig. 3 (b)
in turn shows variations in the inter-area mode of the system
for similar increases of Kd for different values in time delays
in either one of the measurements (the other one has no latency
i.e. is assumed to be zero). These results show for a smaller
delay of 0.1 s the difference between delay in one signal
vs. delay in both signals (green lines in Fig. 3 (a) and (b))
is minimal. Delays in both signals push the inter-area mode
slightly to the left half plane, and the oscillation increases.
When delay is increased, results show improved stability when
it occurs in only one of the measurements (compared to both).

To further explore the effects of individual time delays in
the stability of the system, root-loci analysis is performed for
the inter-area mode as time delays are increased for several
proportional constants, Kd. Figs. 4 (a)-(d) show variations
in the inter-area mode as latencies T1 and T2 are increased
from 0 to 3.5 seconds for values of Kd = 0.25, 1, 2.5 and
5, respectively. To help visualize the results in Fig. 4, the
damping of the inter-area mode for the same cases is shown
in Fig. 5.

Results in Figs. 4 and 5 show that increasing communication
latencies in any of the signals independently tends to destabi-
lize the system for all the different values of Kd considered.
When both measurement signals experience time delays, the
overall performance of the controller is decreased.

B. Variations in the maximum singular value of Si as local
and remote signal time delay increase

The effect that load disturbances have on the plant is de-
termined by the matrix of transfer functions (input sensitivity)
Si in relationship (8). The gain that Si gives to the distur-
bances depends on the input themselves and their direction

1Approximations of different orders were tried and the results were com-
parable
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(c) Inter-area Mode – Kd = 2.5
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Fig. 4. Inter-area mode variations as T1 and T2 are independently increased
for different values of the proportional constant Kd.
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(c) Damping – Kd = 2.5
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Fig. 5. Variations in the damping ratio of the inter-area mode as the system
experiences independent increases in T1 and T2 for different values of the
proportional constant Kd.

(i.e. the coupling between the two inputs). The maximum
singular value of Si determines the maximum possible gain
that these transfer functions can provide and is dependent
on the frequency. This section presents the impact that the
communication latencies T1, T2 and the proportional gain Kd

have on the largest peak of the maximum singular value of Si

as a proxy to analyze the impact they have on the ability of
the system to reject input disturbances.

Fig. 6 (a) shows how the largest peak of σ(Si), referred
to as Mp(Si), varies as a function of Kd for different cases
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of communication latencies when they are symmetric2. The
blue line (circle marker) represents the case where there are
no delays associated with the measurements and shows that
increasing Kd do not considerably affect Mp(Si). When time
delays are associated with the measurements it is observed
that initial increases in Kd will represent increments in Mp and
that increases in the symmetric latencies in general represent a
larger Mp. Fig. 6 (b) shows how Mp is affected by increments
in Kd for cases when the communication latencies associated
with the measurements are asymmetric. In particular, only one
of the measurements has latency while the other has no delay.
Comparing the results in Fig. 6 (a) with those in Fig. 6 (b), it
is observed that larger time delays (T1 and T2) occurring on
both measurements indicate higher Mp than if they occurred
only in one of them.

Fig. 7 shows how the largest peak of the maximum singular
value of of the input sensitivity Mp(Si) change when the
delays in the measurements T1 and T2 are increased from
0 to 3.5 seconds. The analysis was performed for Kd of
values: 0.25, 1, 2.5 and 5 and is presented in Figs. 7 (a)-
(d) respectively. These results indicate that increases in the
latencies of the measurements make the system more sensitive
to load disturbances. This increase in sensitivity is also more
pronounced for larger values of the proportional gain Kd.
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Fig. 6. Variations in the largest peak of the maximum singular value of Si

with increments in Kd. Left: when the two time delays are kept the same.
Right: when only one of the latencies is changed while the other remains at
zero.

IV. TIME DOMAIN SIMULATIONS

In this section, time domain simulations of the linearized
system in Fig. 1 are performed to confirm the results presented
in Section III. The disturbance considered in the simulations is
a step input of magnitude 0.02 pu, occurred at 1 second, in the
local input signal ∆PL1. The other input of the system ∆PL2

remains unchanged (i.e. a value of zero during the simulation).
Figs. 8 (a)-(d) show the difference in generator speeds

(∆ω21(t) in pu) for different values of proportional constant
Kd. Fig. 8 (a) shows that the system is unstable when no
control is applied (i.e. Kd = 0). Fig. 8 (b) shows that a small
Kd constant may start providing some stability. Figs. 8 (c)-
(d) show that for larger values of Kd the system is stabilized
when none of the measurements experience communication
latencies. These figures also show that when delays start to
appear for both measurements symmetrically, the stability

2The peak was limited to 18 so the different results can be observed at the
same scale.
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Fig. 7. Largest peak of the maximum singular value of the input sensitivity
function Si as T1 and T2 are independently increased for different values of
the proportional constant Kd.

of the system is rapidly lost. Note that these results are in
accordance with those presented in Figs. 3(a).

Fig. 9 shows the difference in generator speeds (∆ω21(t))
when there is asymmetry in the latencies of the measurement
signals when Kd = 1. Fig. 10 shows a similar set of simula-
tions, when Kd = 2.5. The results in Figs. 9 and 10 show that
for smaller time delays in the frequency measurements both
values of Kd stabilize the system with higher values yielding
more damping. However these results also show that for higher
latencies, especially when they occur in both measurements,
increases in Kd have a destabilizing effect on the system.
In those cases, a higher value of Kd results in a higher
destabilizing effect from the latencies. These results validate
those presented in Figs. 3(a), 4 and 5.

V. CONCLUSIONS AND FUTURE WORK

A simple wide-area proportional controller to an HVDC
link is used in this work to stabilize a two-area system. The
controller uses frequency signals from each of the areas to
modulate the HVDC power transfer. This paper studies how
asymmetries in the latencies of these frequency signals affect
both the stability and robustness to disturbances of the system.
A linear version of the system is analyzed as a MIMO system
consisting of a matrix of transfer functions with time delays
represented as exponential functions. A state space representa-
tion is derived using a Padé approximation and eigenanalysis
is used to determine the stability characteristics of the system.
A load disturbance sensitivity analysis is presented based on
the variations that the largest peak of the singular value has
with respect to the communication latencies.

The results of mode analysis show that increasing the pro-
portional gain stabilizes the system when the delays are small.
However, when both delays increase simultaneously, this effect

4



0 5 10 15 20
Time (sec)

-5

0

5

10

∆
ω
2
1

×10-3 (a) ∆ω21 vs Time – Kd =0

T1 = T2 = 0
T1 = T2 = 0.25
T1 = T2 = 1
T1 = T2 = 3.5

0 5 10 15 20
Time (sec)

-0.01

-0.005

0

0.005

0.01

∆
ω
2
1

(b) ∆ω21 vs Time – Kd =0.25

T1 = T2 = 0
T1 = T2 = 0.25
T1 = T2 = 1
T1 = T2 = 3.5

0 5 10 15 20
Time (sec)

-0.03

-0.02

-0.01

0

0.01

0.02

∆
ω
2
1

(c) ∆ω21 vs Time – Kd =1

T1 = T2 = 0
T1 = T2 = 0.25
T1 = T2 = 1
T1 = T2 = 3.5

0 5 10 15 20
Time (sec)

-0.4

-0.2

0

0.2

0.4

∆
ω
2
1

(d) ∆ω21 vs Time – Kd =2.5

T1 = T2 = 0
T1 = T2 = 0.25
T1 = T2 = 1
T1 = T2 = 3.5
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Fig. 9. Time simulation of the linear system for different cases of commu-
nication latencies when Kd = 1.

is reversed. It is worth noting that individual increases in
either of the latencies have a lower destabilizing effect than
if the delay occurs in both measurements. The results of the
sensitivity analysis show that increments in the communication
delays increase largest peak of the singular value which makes
the system less able to reject load disturbances. Finally, time
domain simulations were conducted and their results show a
strong agreement with the root-locus approach.

Because communication latencies are random in nature,
future work will include analyzing how this stochasticity
affects the stability and robustness of the system.
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