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Co-Optima research is structured around 
two guiding hypotheses on engines and fuels
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Central Engine Hypothesis 
There are engine architectures and strategies 

that provide higher thermodynamic efficiencies 

than are available from modern internal 

combustion engines; new fuels are required to 

maximize efficiency and operability across a 

wide speed / load range

Central Fuel Hypothesis
If we identify target values for the critical fuel 

properties that maximize efficiency and 

emissions performance for a given engine 

architecture, then fuels that have properties 

with those values (regardless of chemical 

composition) will provide comparable 

performance



Co-Optima engine & fuel research proceeds 
along two parallel application/mode tracks
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Co-Optima’s application/mode tracks use 
merit functions to guide fuel & engine research

● Merit functions quantify engine & fuel property effects to 

guide engine & fuel R&D for each combustion approach

– Boosted SI, multimode ACI, mixing-controlled CI, etc.

● Boosted SI merit function quantifies engine & fuel effects 

as percentage-point decrease in fuel consumption

– Actively updated – recently: adjusted many coefficients; 

removed LSPI term (too uncertain); added cold-start term
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Overview: Co-Optima Engine & Fuel Tasks for 
Advanced Compression Ignition (ACI)
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Co-Optima ACI projects use both gasoline-like & diesel-like fuels

● ACI approaches using “boosted-SI” gasoline-like fuels

– Low-Temperature Gasoline Combustion (LTGC): pre-vaporized, premixed

Sandia National Laboratories, John Dec

– Gasoline Compression Ignition (GCI): 2nd injection near TDC, stratified

Argonne National Laboratory, Steve Ciatti

● ACI approaches using diesel-like or dual-fuel with gasoline-like fuel

– Development of Stratified ACI: Reactivity-Controlled CI (RCCI)

Oak Ridge National Lab., Scott Curran (multi-cylinder LD metal engine)

– Fundamental Processes of Stratified ACI: RCCI, “optical” fuels

Sandia National Labs., Mark Musculus (single-cyl. HD optical engine)

– Mixing-Controlled CI Combustion (MCCI): ducted fuel injection (diesel)

Sandia National Laboratories, Chuck Mueller

● ACI merit function development

– ANL/ NREL/ ORNL/ SNL – Andrew Ickes (lead, ANL)
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LTGC (SNL, Dec):  Determine optimal properties to 

allow both LTGC and boosted SI, evaluate fuel metrics
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● Motivation: LTGC provides efficiencies at or above those of diesel engines

– Substantial reduction in fuel consumption vs. SI  use light-distillates efficiently for 
more effective use of crude oil supplies

– Ultra-low NOx and PM minimize aftertreatment and cost

● Project Objective: Determine / develop optimal LTGC fuel

LTGC Research  Engine– FY17 Objectives: Investigate the performance of 
“booted-SI” fuels for LTGC and the validity of the 
Central Fuel Hypothesis

 Are RON & MON sufficient metrics for LTGC?

 Also provide well-characterized data for kinetic model 
development

● Approach: Use Sandia single-cylinder LTGC 
engine

– Well-controlled experiments for premixed fueling 
(also G-DI, PFS fueling, though not used here)

– Work w/ Co-Optima Fuel Properties Team & 
Boosted-SI engine researchers to develop fuel 
test matrix
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RON 98.0 97.4 98.1 98.2 98.0

MON 96.6 86.6 87.8 88.0 87.1

S 1.4 10.8 10.3 10.2 10.9

Aromatics 0.7 13.8 39.8 13.4 33.2

n+i-Paraffin 98.1 40.5 46.2 56.4 40.6

Cycloalkane 0.0 7.0 8.0 2.9 24.2

Olefins 0.1 6.0 4.5 26.5 1.6

Ethanol 0.0 30.4 0.0 0.0 0.0

LTGC (SNL, Dec): at f = 0.4, identical RON & S fuels 

have diverging CA50; alternative “O2” OI works well
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Accomplishments – Fuel Reactivity

● Designed fuel test matrix with five fuels with 
RON  98, four with S  10.5, one with S  1
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LTGC (SNL, Dec): at f = 0.4, identical RON & S fuels 

have diverging CA50; alternative “O2” OI works well
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– OI" correlates 
fuels fairly well at 
Pin=2.4 bar, 
R2 =0.870

– Further understanding 
of this intake-O2 based 
OI" is needed

Accomplishments – Fuel Reactivity

● Designed fuel test matrix with five fuels with 
RON  98, four with S  10.5, one with S  1

● Pin = 1.0 bar:  Surprisingly, reactivity varies 
among matched RON&S fuels: E30>>Aromatic

– For LTGC at Pin = 1 bar with these fuels, Octane 
Index (OI) gives poor correlation (R2 =0.536)

– RON and MON appear insufficient for specifying 
fuel reactivity for lean LTGC (f = 0.4) at this cond.

– Perhaps this is because E30 is less f-sensitive, or 
differences in HOV  Further studies are planned

● Pin = 2.4 bar:  Try OI" based on intake O2, since
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LTGC (SNL, Dec): Reactivity of E30 (high RON & S) is 

similar to E0, correlates with ITHR & f-sensitivity
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Reactivity Changes w/ Boost

● Increased fuel autoignition reactivity with boost 
is a key challenge for both LTGC and SI

– LTGC: High EGR required for CA50 control limits O2.

– SI: Increased knock propensity limits CR

● Despite higher RON & S, E30 has similar 
reactivity to Reg-E0 for Pin = 1.0 – 1.6 bar
 Somewhat less reactive for higher Pin

● Higher RON & S aromatic fuel is much less 
reactive than Reg-E0, esp. at Pin ≥ 1.8 bar

– At Pin = 1.8 bar, aromatic & E30 have lower ITHR
than Reg-E10  may affect reactivity trends 

– Also agrees with lower f-sensitivity (for PFS)

Future Work:

● Evaluate E30 f-sensitivity & high load behavior

● Evaluate the other three fuels in test matrix
 High-Olefin, High-Cycloalkane, & Alkylate

● Investigate Co-Optima fuels with good potential for 
full-time LTGC-ACI engines  Support ACI merit function
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GCI (ANL, Ciatti): Minimize pollutant emissions, noise, 

fuel consumption for three 98 RON “boosted-SI” fuels
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● Objective: 

– Demonstrate Gasoline Compression Ignition (GCI) combustion with high RON, high S Boosted-

SI fuels in a 1.9L GM engine

– Investigate parameters that affect engine performance and emission; and identify condition with 

desirable outputs (i.e. pollutant emissions, noise, efficiency)

Parameter Value

Engine 1.9L GM 4-cylinder (17.8:1 CR)

Engine Speed [rpm] 1000

Engine Load [bar BMEP] 3-6

Fuel – 98 RON: Aromatic, Alkylate, E30

Injection Pressure [bar] 600

Start of Injection [°aTDC] -50/varied

Fuel Split (~ % by duration) 55/45

EGR [%] 20 (0-30)

Boost Pressure [bar(a)] 1.4 (1.0-1.7)

Intake Air Temp [°C] 55 (35-85)

Global λ (= 1/Φ) 1.8 (1.6, 2.0)

GM1.9L Engine (ANL)

● Approach: double injection strategy to control combustion phasing (CA50 ~ 5 aTDC) while maintaining 

combustion stability (COVIMEP<3%) and noise (<90 dB), low FSN (<0.1). Parametric study of:

– Exhaust Gas Recirculation

– Global lambda Impact on

– CA10, CA50, HRR

– Emission (NOx/HC/CO)

Endoscope Imaging

(Cylinder 4)

Injector 

tip

Alkylate, 10%EGR



GCI (ANL, Ciatti): Co-Optima core fuels with CA50, 

noise, & COV const., EGR  FSN & NOx, CO & HC
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● For Co-Optima core fuels, as EGR is increased to 20%:

– FSN decreases ~70%, with FSN Aromatic > Alkylate > E30

– NOx emissions are halved, while CO and HC 

emissions increase 20-50% 

– Exhaust emissions control still required

● BSFC/ISFC are larger than expected due to 

turbocharger issues

● l=1.8, EGR=20% point selected for endoscope imaging
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GCI (ANL, Ciatti): at 20% EGR & l=1.8, E30 has fastest 

burn, highest in-cyl. soot, low late-cycle soot (& FSN)
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Soot luminosity 
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● Soot luminosity appears near second HRR peak, akin to conv. diesel 

● E30: highest peak soot KL integral, but lowest late-cycle (& lowest FSN)

● Future work:

– Improve engine efficiency and BSFC with turbocharger 

operation and injection strategy (higher BMEP points)

– Endoscope imaging for OH* chemiluminescence in low 

HRR region where soot is absent

– PM measurement for GCI soot characteristics

E30
Alkylate



Stratified ACI (ORNL, Curran & SNL, Musculus): RCCI in 

LD multi-cylinder metal and HD single-cylinder optical engine
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Motivation for Using RCCI in ACI Engines

On-the-fly in-cylinder mixing of two fuels = 
Control of combustion phasing & HRR

• Global octane number adjusted by fuel ratio

• Reactivity stratification by injection timing

RCCI Challenges

Peak pressure rise rate (PPRR) limits high load

• E30 extends limit  not well understood

Incomplete combustion at lowest loads

• Reasons are unclear

Approach for RCCI Work

• Use ORNL multi-cylinder metal engine to 
identify key fuel-property & operating-
condition combinations where an 
improved understanding is required

• Use SNL single-cylinder optical engine to 
image in-cylinder mixing, ignition, and 
combustion processes at these 
conditions

SNL Optical Engine
• Single-cylinder heavy-duty 

diesel engine (GDI + DI) 

• Image combustion & in-
cylinder mixing (PRF) 

13

ORNL Metal Engine 
• Multi-cylinder light-duty 

diesel engine (PFI + DI)
• Transient capable + 

emissions characterization



Stratified ACI (ORNL, Curran): Constant PRF limits of RCCI 

CA50 control authority approach premixed & mixing-control
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● Use PRFs (iso-octane & n-heptane): similar physical properties, different reactivity

– DI SOI from -70 to -35 CA aTDC have characteristic RCCI CA50 control authority

– Control authority is limited by constant PRF in each sweep

> Varying PRF by changing premixed ratio (Rp) would yield much greater CA 50 control

“Premixed”

PPRR / 
ηcomb Limit

Cyl. Bal.
Limit

Stability Limit

Pin = 1.04 bar 

Tin = 40C

2000 rpm

● Two limits of control 

authority range:

1. “Premixed”
– Premixed + DI PRF80 

reaches premixed “HCCI”

– Premixed PRF100 + DI 

PRF0 does not reach 

premixed “HCCI” CA50 

> Wall wetting?

> Incomplete mixing?

2. “Mixing-Controlled”

– Late DI SOI: control 

authority trend reverses

> Fuel-rich mixing-

controlled combustion?

Gain insight from

optical diagnostics



Fundamental Stratified ACI (SNL, Musculus): Good matching of 

combustion phasing & control authority in optical & metal engines
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• Matching SNL HD optical engine with ORNL LD metal engine: 1. charge-gas r & T @ 
mid-control-authority DI injection, 2. premixed iso-octane (80%), 3. global Ф (0.35)

• Even with different engine displacement (heavy-duty vs light-duty), compression 
ratios, and piston geometry, the combustion characteristics are similar, with three 
CA50 regimes (pre-mixed, RCCI, & mixing-controlled) and similar heat release shapes

The mid-point of combustion heat release (CA50) 
depends on the injection timing of high-reactivity 
(PRF 0) fuel from the common rail (CR) DI injector

-100 -80 -60 -40 -20
DI SOI [CA aTDC]

For a DI injection in the “RCCI regime,” the
heat release phasing is shifted, but the
curves have the same characteristic shapes

DI



Fundamental Stratified ACI (SNL, Musculus): Structure in IR 

& visible images (=incomplete mixing?), bright @ late DI (=rich?)
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• Structure in IR imaging of 1st-stage and 
visible imaging of 2nd-stage ignition at all 
conditions – incomplete mixing?

• Brightening jet structure in visible imaging 
indicates transition to richer mixtures

Next steps

• Follow up with laser-sheet mixing diagnostics 
to quantify mixing effects for these PRFs

• Image combustion phenomena for ORNL
fuels with different physical properties

IR

Visible

“Pre-mixed”

“RCCI”
“Mixing-

Controlled”

SOI = -25 °CA aTDC

SOI = -25 °CA aTDC

Gain=1

-8 °CA aTDC

-12 °CA aTDC

IR (3.4 µm) images of hot fuel & LTHR emission

Visible (400 – 700 nm) images of HTHR emission

SOI = -60 °CA aTDC

SOI = -60 °CA aTDC SOI = -40 °CA aTDC

SOI = -40 °CA aTDC
-17 °CA aTDC -16 °CA aTDC

Gain=3

2 °CA aTDC

Gain=3

6 °CA aTDC



MCCI (SNL, Mueller): Maintain high efficiency, control, 

& fuel flexibility of diesel; use ducted injection for soot
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● Mixing-controlled CI combustion is desirable for many reasons

> Inherently high efficiencies, low HC & CO emissions

> Ignition timing easily controlled by injection timing

> Inherently fuel-flexible (cetane # is key fuel parameter)

– Soot is a barrier to fully achieving the above benefits

> Soot is a potent toxin

> 2nd only to CO2 as a climate-forcing species

> Limits amount of EGR possible for NOx control 

> Aftertreatment is expensive, has efficiency 

penalties (backpressure, regeneration)

● Approach: Use Ducted Fuel Injection (DFI) 

to make richest autoigniting mixtures leaner

– Effective at lowering soot (next slide)

– Geometrically & conceptually simple

– Tolerant to dilution for NOx control

– Synergistic with Co-Optima oxygenated 

fuels, but does not require oxygenation

– Might increase comb. efficiency by limiting over-mixing at spray periphery

DFI Concept:

Inject fuel down a 

small tube/duct 

aligned with the 

spray axis



MCCI (SNL, Mueller): Initial DFI data show considerable 

soot reduction even with non-oxygenated fuel, no EGR
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● Ducted Fuel Injection (DFI) in 

Sandia constant-volume 

combustion vessel

– 90 µm orifice diameter

– 1500 bar injection pressure

– 21 mol% oxygen (no EGR)

– n-dodecane fuel (not 

oxygenated)

DFI is effective at lowering or preventing soot 

incandescence over a range of temperatures

Duct

signal saturation
= hot soot

Chemilum. only, no soot



MCCI (SNL, Mueller): DFI reduces in-cylinder soot by 

factor of ~10, longer lift-off, higher pressure rise
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● Effects of DFI on combustion observables

– Lift-off lengths increase with DFI

> Flame anchors to duct exit at 1000 K

> Longer ignition delay could increase noise

– Soot incandescence decreases by 10×

> Similar for quantitative in-cylinder soot

– Total pressure rise (ΔP) in vessel is 

slightly, but consistently larger with DFI

> Higher combustion efficiency?

> Reduce over-mixing at spray periphery?

● Future Work:

– Optical engine tests

> emissions, efficiency, 

& fuel effects

> Vertical-sheet LII

– Develop merit 

function



ACI Merit Function (NREL/ORNL/SNL + ANL-Ickes): 

Quantify fuel properties enabling high-efficiency ACI
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● ACI merit function: quantify enabling 

engine conditions & fuel properties

– Boosted SI merit function quantifies 

efficiency effects to guide

fuel and engine co-optimization

– ACI approaches already have high 

efficiency; quantify enabling fuel & 

engine effects to guide co-optimization

● Will synthesize results from multiple 

Co-Optima ACI approaches

> Highlight key enabling fuel properties for 

each combustion approach

> Relate fuel properties to engine features 

that affect operating range and efficiency

● Design engine and fuel experiments 

to inform merit function(s) across 

the suite of ACI combustion 

concepts

LTGC RCCI GCI

LLFC SI-based

(Industry solutions incorporated based on published 
literature and industry support/guidance)

Identify enabling fuel properties 

and engine features and quantify 

their effects for each ACI approach

Specific focus on properties/ranges 

that preclude each ACI approach

Property guidance and merit function to 

direct ACI engine & fuel co-optimization



Summary: Co-Optima Engine & Fuel Tasks for 
Advanced Compression Ignition (ACI)
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ACI approaches using “boosted-SI” gasoline-like fuels

Identical RON & S fuels: diverging CA50, “O2” OI works well 

E30 reactivity similar to E0, correlates w/ ITHR & f-sensitivity

W/ CA50, noise, COV const., EGR  FSN&NOx, CO&HC

20% EGR & l=1.8: E30=highest in-cyl. soot, low late-cyc. soot

ACI approaches using diesel-like fuel or dual fuels

Const. PRF control authority limits = premixed, mixing-control

Wall-wetting/incomplete-mixing may narrow premixed limit

Matched optical/metal engine comb. phasing & control auth.

Image struct. (=incomplete mixing?), bright @ late DI (=rich?)

DFI reduces in-cyl. soot 10X w/ non-oxygenated fuel, no EGR

Longer lift-off & ignition delay (noise?), higher P (efficiency?)

ACI merit function development

Identify/quantify fuel properties enabling high-efficiency ACI

Merit function to guide ACI engine & fuel co-optimization

R² = 0.870
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