
Application of IEC 61724 Standards to Analyze PV System 
Performance in Different Climates

Katherine A. Klise1, Joshua S. Stein1, and Joseph Cunningham2

1 Sandia National Laboratories, Albuquerque, NM 87185, USA, 2 Sunny Energy, Tempe, AZ 85282, USA

Abstract —  After a PV system is installed, periodic analysis is 
necessary to track how measured performance meets expectations. 
IEC 61724-3 outlines methods to quantify long term performance 
of PV systems. Applying these methods can be challenging due to 
the large quantity and possible quality control issues with 
measured data. In this paper, the methods outlined in IEC 61724-
3 are applied to data collected at PV systems operating in different 
climates. The methods used to process data, run quality control 
tests, and compute performance metrics are described along with 
system performance issues found through the analysis.

Index Terms — IEC 61724, open source software, system 
performance

I. INTRODUCTION

The International Electrotechnical Commission (IEC) has 
developed guidance to measure and analyze energy production 
from photovoltaic (PV) systems. IEC 61724-1, -2, and -3
[1,2,3] outlines guidance on data collection and evaluation 
methods for short term capacity and long term system 
performance. This paper focuses on the energy evaluation 
outlined in IEC 61724-3. The evaluation compares measured 
energy production to expected energy production given site 
specific weather conditions and system specifications. The 
procedure evaluates system performance over a full range of 
environmental and operating conditions, generally over the 
course of one year. 

The energy performance index (EPI), defined as the ratio 
between measured energy and expected energy, is 
recommended to track long term system health [3,4,5]. A
system performance model, which can be simple or complex, is 
used to estimate expected energy. While small systems might 
use a simple performance ratio (PR) to model expected energy, 
this method is influenced by seasonal temperature variations. 
Even a temperature corrected PR can have variations which 
skew results due to seasons and geographic locations. More 
complex models, such as the Sandia PV Array Performance
Model (SAPM) [6], System Advisor Model (SAM) [7], and 
PVsyst [8], take into account measured weather conditions
along with estimates for soiling and degradation. EPI is 
computed for times when the system is available (in-service 
EPI) and over the entire year (all-in EPI). System availability is
generally determined using inverter operation or other status 
indicators. 

The guidelines outlined in IEC 61724-3 are designed to be 
flexible, allowing analysts and system operators to define a set 
of requirements to quantify performance for a particular 
system. The requirements can change depending on the system 

size, instrumentation, and intended purpose of the analysis. In 
general, a system performance model must be defined along 
with data filtering methods and thresholds used in data quality 
control tests. These decisions can have a large impact on the 
resulting analysis. For example, it is important to apply data 
quality control tests prior to running a performance model using 
measured data. Poor quality data, related to sensor or human 
error, must be properly filtered out when evaluating system 
performance. Small gaps in data can be filled using a variety of 
methods, including interpolation, using data from duplicate 
sensors, historical data, or data generated using models. 
However, larger data gaps might have to be eliminated from the 
performance analysis. Duplicate sensors can also be used to 
detect sensor drift or compute parameter variability. IEC 
61724-3 includes example data filtering criteria to identify data 
that is outside expected range, missing, associated with a dead 
sensor, or changes abruptly. The filtering criteria should be 
adjusted according to site specific conditions and system 
instrumentation. After running a preliminary analysis, it is 
important to assess the model and other assumptions used to 
define system performance until the analyst and system 
operator agree on a final analysis procedure. These decisions
can be challenging given the large amount of PV system data, 
systems that collect different types of data, and the wide range 
of possible data quality control issues.

This paper describes an application of the standards outlined 
in IEC 61724-3 using data collected at identical PV systems 
operating at four sites across the United States. Results are used 
to evaluate system performance and track how data quality 
control tests diagnose faults and system availability. The open 
source software packages Pecos [9] and PVLIB [10] are used 
for the analysis.

II. DATA

The data used in this analysis was collected as part of the 
Regional Test Center (RTC) program managed by Sandia 
National Laboratories (SNL). The RTC program collects data 
at several sites across the United States, including Albuquerque, 
New Mexico; Orlando, Florida; Williston, Vermont; and Las 
Vegas, Nevada. Identical ‘baseline’ PV systems and weather 
stations were installed at each site (Fig. 1). These systems are 
used to test sensor operation and maintenance routines. Data 
collection is periodically disrupted due to planned site and 
system upgrades. For this reason, sensor failure and system 
downtime is expected to be higher for these systems, as
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Fig. 1. PV system at the Nevada RTC site. Identical systems are 
located in New Mexico, Florida, and Vermont.

compared to production-level systems.
Each PV system is configured with two inverters, each with 

one series-connected string of 12 Suniva Optimus 270 Black 
modules. These modules have the following datasheet electrical 
characteristics: Pmax = 270 W, Vmp = 31.2 V, Voc = 38.5 V, 
Imp = 8.68 A, Isc = 9.15 A. The arrays all face South and are 
tilted at 35˚. 

The weather station collects data for global horizontal 
irradiance (GHI), direct normal irradiance (DNI), diffuse 
horizontal irradiance (DHI), air pressure, wind speed, wind 
direction, and relative humidity. For each string, DC voltage, 
DC current, AC voltage, AC current, AC power, power factor, 
frequency, reference cell irradiance, and reference cell 
temperature are recorded. Module temperature is recorded at 8 
locations per string. Ambient temperature and POA irradiance 
is also recorded at the site. Data collected in 2016 was used for 
the analysis. Data was recorded at a 1-minute time interval, 
resulting in approximately 25 million data points per site.

III. METHODS

The following section describes an application of IEC 61724-
3 to compute system performance at the four sites. The analysis 
is carried out using Pecos [9] and PVLIB [10], both open source 
software packages developed by SNL.

Pecos is used to analyze the quality of time series data, 
subject to a set of quality control tests. Many of the features 
included in Pecos were designed specifically for quality control 
tests outlined in IEC 61724-3, including the ability to identify
data that is outside expected range, missing, associated with a 
dead sensor, or changes abruptly. Additionally, Pecos includes 
methods to include filters and composite signals in the analysis. 
Filters can be used to smooth data and/or eliminate data 
collected at specific times from quality control tests. Composite 
signals are any type of new data generated using existing data
or models. Composite signals can be used to include 
performance models or simple relationships in the analysis.

Time series data can be easily loaded into Pecos from a wide 
range of formats, including from file (i.e. csv, excel) and 
directly from databases (i.e. SQL). For this analysis, a years’ 
worth of data is loaded into Pecos for each site. Similar analysis 
could be run in real-time (or near real-time) to help diagnose 
system performance issues quickly. Daily analysis is 

recommended to ensure systems record high quality data. 
Yearly summary reports can then be performed to track long 
term system health. Pecos can be installed from
https://github.com/sandialabs/pecos.

PVLIB is used to model expected system performance based 
on measured weather conditions and to compute a data filter 
based on sun position. Several performance models are 
included in PVLIB, including the SAPM [6], single diode
model [11], and PVWatts model [12]. PVLIB can be installed 
from https://github.com/pvlib/pvlib-python.

The following steps are taken to analyze energy production 
for each site:

Step 1: Check for timestamp issues. When working with 
time series data, it is important to check for and fix timestamp 
issues before proceeding with analysis. Pecos includes methods 
to check for missing timestamps, duplicate timestamps, and 
timestamps out of sequence. These methods correct issues with 
the timestamp and record issues in the final report. 

Step 2: Preliminary data inspection: Visual inspection of 
sensor data can help quickly identify systematic errors, and 
define filters and quality control tests. Sensor data plotted as a 
time-of-day versus day-of-year heatmap can help identify 
shading issues, large data gaps, and upper and lower bounds for 
quality control tests. An example heatmap is shown in Fig 2. 
This figure shows POA irradiance at the Nevada site. No 
persistent shading issues were noted based on the image and 
missing data is observed in February and November (vertical 
white lines). Pecos includes methods to create time-of-day 
versus day-of-year heatmaps with superimposed time series 
that show sun position or other attributes.

Fig. 2. POA irradiance heatmap for the Nevada site.

Step 3: Apply filters. Data collected at night or during low 
irradiance conditions can introduce errors in the performance 
evaluation. For this reason, data collected when the sun 
elevation is less than 20 degrees was eliminated from the 
analysis. PVLIB is used to compute sun position as a function 
of site location and date-time. Additional low irradiance filters
could be added in future analysis.

Step 4: Add composite signals. Computing relationships 
between different types of measured data and comparing
measured data to models can help identify issues with system 
performance. The following composite signals are used in the 



analysis: 1) DC power computed from DC voltage and DC 
current, 2) inverter efficiency computed from AC and DC 
power, 3) normalized efficiency computed from DC power and 
POA irradiance, and 4) module temperature deviation defined 
as the difference between each module temperature sensor and 
the median value over all 16 module temperature sensors. When 
multiple sensors are available, comparing a single sensor to the 
median value can help identify sensor drift. An additional 
composite signal, the power performance index, is computed in 
Step 6. These composite signals are used in quality control tests 
to check for anomalous conditions.

Step 5: Run data quality control analysis. IEC 61724-3
outlines basic quality control tests to check if data is outside 
expected range, missing, associated with a dead sensor, or 
changes abruptly. The methods in Pecos were designed to run 
these tests. For this analysis, data that is missing for less than 2 
hours was filled using a linear filter. Data that is missing for 
more than 2 hours is flagged as missing. A sensor is flagged as 
recoding data outside an expected range if the threshold 
specified in Table I (column 2) is surpassed for more than 2
consecutive hours. The thresholds for air pressure are based on 
expected air pressure, calculated from site elevation using 
PVLIB. A sensor is flagged as dead if it changed by less than 

TABLE I
Expected range and threshold values for quality control tests.

Variable
Expected 

range
Dead sensor 

threshold

Abrupt 
change 

threshold
DC current and AC 
current (A)

> 0 and
< Imp·1.5

< 0.0001

DC voltage (V)
> 0 and

< Vmp·N·1.2 * < 0.0001

AC voltage (V)
> 230 and

< 250
< 0.0001

DC power ** and 
AC power (W)

> 0 and
< Pmp·N·1.2 * < 0.0001

Power factor > -1 and < 1 < 0.0001
Frequency (Hz) > 57 and < 63 < 0.0001
POA, DNI, GHI, 
and ref cell 
irradiance (W/m2)

> -6 and < 
1500

< 0.0001

DHI (W/m2) > -6 and < 500 < 0.0001

Air pressure (mbar)
> P·0.97 and

< P·1.03 * < 0.0001 > 25

Wind speed (m/s) > 0 and < 32 < 0.0001 > 10
Wind direction > 0 and < 360 < 0.0001
Relative humidity > 0 and < 100 < 0.0001 > 50
Ambient 
temperature (oC)

> -30 and < 50 < 0.0001 > 20

Module and ref cell 
temperature (oC)

> -30 and < 90 < 0.0001 > 20

Inverter efficiency** > 0.5 and < 1 > 0.25
Normalized 
efficiency ** > 0.8 and < 1.2 > 0.25

Module temperature 
deviation (oC) ** > -10 and < 10

Power performance 
index ** > 0.8 and < 1.2 > 0.25

* N is the number of series connected modules and P is the expected air pressure
based on site elevation

** Composite signal

the threshold specified in Table I (column 3) for 5 consecutive 
hours. A sensor is flagged as changing abruptly if the value 
changes by more than the threshold specified in Table I (column 
4) in a 15-minute timeframe. These thresholds can be adjusted 
to customize analysis. For each test failure, the sensor name, 
along with the start and end time of each failure, and an error 
flag is recorded in the final report.

Step 6: Compute expected power and energy production.
Expected energy is computed using actual weather data. If 
weather data is unavailable, or is deemed unreliable given one 
or more quality control tests run in Step 5, it is eliminated from 
the energy calculation. The PVWatts DC model [12] is used to 
compute expected DC power; the model was run using PVLIB.
Expected DC power is then converted to energy output. An 
additional quality control test is defined to flag times when the 
power performance index, defined as measured power divided 
by expected power, is outside an expected range of 0.8 to 1.2 
for more than 2 consecutive hours. As with the quality control 
tests run in Step 5, test failures associated with the power 
performance index are recorded in the final report.

Step 7: Compute metrics. IEC 61724-3 recommends 
computing in-service EPI and all-in EPI. For this analysis, 
several additional metrics were computed, including data 
availability (DA), quality control index (QCI), and system
availability (SA). For each sample time, DA is the percent of
expected data that is recorded and QCI is the percent of 
expected data that passed all quality control tests. The systems
used in this analysis do not include an inverter status flag that 
indicate when the system is available. For that reason, SA is 
based on the results of quality control tests associated with 
power (AC and DC), inverter efficiency, normalized efficiency, 
and power performance index. For each sample time, SA is 1 if 
the quality control tests associated with these parameters all 
passed and 0 otherwise. In-service EPI is the ratio between 
measured energy and expected energy, computed when the 
system is available. All-in EPI is the same ratio, computed over 
the entire year. SA, in-service EPI, and all-in EPI are computed 
for each string. If data is missing while the system is known to 
be available, energy estimates could be made using historical 
weather data during that time.

After completing these steps, the analyst and system operator 
should review quality control test failures and performance 
metrics. Adjustments can be made to the quality control 
thresholds and performance model if significant issues are 
identified, otherwise, the analysis should remain stable year-to-
year. Changes in the analysis should be clearly documented.
The thresholds and model input can be saved in Python scripts 
that are used to run Pecos and PVLIB. These scripts can then 
be rerun to reproduce results and for future analysis. It is noted 
that several procedures recommended in IEC 61724-3 were not 
included in this analysis. For example, historical data was not 
used to compute predicted energy, systematic (bias) and 
random (precision) uncertainties were not analyzed, cleaning 
and calibration schedules along with grid availability was not 



included in the analysis, and missing or erroneous data was not 
replaced with data from other sources. These steps could be 
included in future analysis.

IV. RESULTS

The RTC data was analyzed using the methods outlined 
above. Preliminary analysis, run on a daily basis, indicated that 
modules at all sites were underperforming by approximately 
5%. This prompted a module flashtest at the New Mexico site. 
The electrical characteristics were subsequently updated to the 
following: Pmax = 255.7 W, Vmp = 30.9 V, Voc = 38.0 V, Imp 
= 8.28 A, Isc = 8.74 A. The discrepancy with datasheet values 
could be caused by light induced degradation or overrating. The
new values were used to estimate performance for the year.

For each site, time-of-day versus day-of-year heatmaps were 
generated for each sensor reading. These figures were used to 
identify shading issues, large data gaps, and define thresholds 
listed in Table 1. No persistent shading issues were observed. 
A large gap in the data record was noted in Vermont between 
the middle of April and early May. Other data gaps were 
relatively short (a few days or less). Missing data was attributed 
to sensor failure, system maintenance, and data transfer issues.

Table II includes annual average data availability (DA), 
quality control index (QCI), system availability per string (SA), 
along with measured energy, expected energy, in-service EPI,
and all-in EPI for each site. Fig 3 and 4 illustrate DA, QCI, SA, 
in-service EPI, and all-in EPI throughout the year for the 
Nevada and Vermont site. DA, QCI, and SA are reported as a 
daily average. In-service and all-in EPI are reported as a 
monthly average.

DA was relatively high at all four sites with a few exceptions.
In Florida, data was missing periodically, mainly between the 
middle of June and early October. As mentioned above, the 
Vermont site had a large gap in the data record, most of the data 
was missing over a 23-day period in the Spring.

QCI was also relatively high at all four sites. Note that QCI 
can be greater than DA because it is the percent of available 
data that passed all quality control tests. For example, at the 

TABLE II
Annual DA, QCI, SA (per string), measured energy, expected 

energy production, and EPI.
NM NV FL VT

DA 99% 98% 96% 95%
QCI 98% 99% 98% 92%
SA, String 1 97% 85% 83% 72%
SA, String 2 97% 96% 84% 72%
In-service measured 
energy (kWh)

12310 11145 9019 5977

In-service expected 
energy (kWh)

12441 11394 9459 6293

All-in expected 
energy (kWh) 

12571 12186 10318 7884

In-service EPI 99% 98% 95% 95%
All-in EPI 98% 91% 87% 76%

Fig. 3. DA, QCI, SA, in-service and all-in EPI for Nevada. 

Fig. 4. DA, QCI, SA, in-service and all-in EPI for Vermont. 



Nevada site, only 13% of the data was available between Feb 
12 and Feb 17. Of the data that is available, 78% passed all 
quality control tests. During that time, DC current sensors were 
flagged as dead, with readings that changed by less than 0.0001 
over 5 consecutive hours. At the Vermont site, QCI is 
consistently around 95% due to unexpected abrupt changes in
normalized efficiency and a module temperature sensor that is 
out of alignment with other module temperature sensors. In
April and May, QCI decreases to around 75% due to DC power 
and current readings that are below 0 and several other sensors 
that were flagged as dead. These issues were verified with
system operators.

The system is defined as ‘available’ if sensor data associated 
with power (AC and DC), inverter efficiency, normalized 
efficiency, and power performance index pass all quality 
control tests. Using this definition, SA is reported per string. All 
sites, with the exception of Nevada, have very similar 
availability per string. In Nevada, String 1 DC power is very 
close to 0 between April 1 and May 9. The quality control test 
for DC power will not flag this as an error, however bounds on 
normalized efficiency, inverter efficiency, and the power 
performance index all indicate anomalous conditions during 
that time. In Vermont, SA is highly variable in the winter due 
to anomalous conditions in normalized efficiency, inverter 
efficiency, and power performance index. SA at the Florida site 
was similarly noisy, due to occasional low inverter efficiency.

In service EPI and all-in EPI were computed using measured 
and expected energy. In New Mexico, in-service and all-in EPI 
are both very high. In Nevada, Florida, and Vermont, in -service 
EPI is slightly lower and issues with system availability 
reduced the all-in EPI by 7 to 19%.

As part of this analysis, quality control tests identified 
numerous issues throughout the year at all four sites. The tests 
were able to accurately identify dead sensors, sensor drift, and 
underperforming inverters. Pecos keeps a record of the sensor 
name, start and end time of each test failure, and an error flag. 
This information can be included in HTML generated reports, 
saved to a file, or stored in a database. Graphics can be 
generated which help pinpoint the data points that were 
involved in an individual test failure. Examples are shown in 
Fig 5. Each example shows one day of data along with issues 
found using the quality control tests run as part of this analysis. 
The gray region indicates times when sun elevation is < 20 
degrees. This region is eliminated from quality control tests. 
Green marks identify data points that were flagged as changing 
abruptly, red marks identify data points that were outside 
expected range. The top image shows a spike in normalized 
efficiency at the New Mexico site. The middle image shows a 
sudden drop in inverter efficiency at the Nevada site. The 
bottom image shows a module temperature sensor that is 
oscillating between normal and anomalous conditions at the 
Florida site.

If a quality control test results in false positives, thresholds
and moving windows can be adjusted, filters used to eliminate 

data from quality control tests can be modified, the minimum 
number of consecutive failures needed to signal a warning can
be increased, and data can be smoothed before the quality 
control test is run. 

Normalized Efficiency, New Mexico site

Inverter Efficiency, Nevada site

Module Temperature, Florida site

Fig. 5. Example quality control graphics illustrating quality 
control issues. Green marks indicate data points that were flagged as 
changing abruptly, red marks indicate data points that were outside 
expected bounds. The x-axis is in hours of the day.

V. DISCUSSION 

System performance was evaluated at identical PV systems 
operating at four sites across the United State using methods 
outlined in IEC 61724-3. Pecos and PVLIB, both open source 
software tools, were used in the analysis. These tools were used 
to process and filter large quantities of data, run quality control 
tests, compute expected energy production and system 
performance, and generate reports. The Python scripts used to 
run the analysis can be used to reproduce results and to compare 
year-to-year performance.

The methodology was able to identify gaps in the data record 
and anomalous conditions. Thresholds used in the quality 
control tests were systematically adjusted based on discussions 
with system operators and visual inspection of system data. 
Future research will compare the method used to estimate data 



availability, quality control index, and system availability with 
system logs. While the methods result in similar analysis across 
the four sites, several factors, such as variable system 
availability in Florida and Vermont, require further 
investigation. In addition to the yearly performance evaluation
discussed in the paper, short term capacity tests and daily 
quality control analysis are recommended to evaluate 
performance, minimize downtime, and ensure the collection of 
high quality data.
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