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Abstract — After a PV system is installed, periodic analysis is
necessary to track how measured performance meets expectations.
IEC 61724-3 outlines methods to quantify long term performance
of PV systems. Applying these methods can be challenging due to
the large quantity and possible quality control issues with
measured data. In this paper, the methods outlined in IEC 61724-
3 are applied to data collected at PV systems operating in different
climates. The methods used to process data, run quality control
tests, and compute performance metrics are described along with
system performance issues found through the analysis.

Index Terms — 1EC 61724, open source software, system
performance

1. INTRODUCTION

The International Electrotechnical Commission (IEC) has
developed guidance to measure and analyze energy production
from photovoltaic (PV) systems. IEC 61724-1, -2, and -3
[1,2,3] outlines guidance on data collection and evaluation
methods for short term capacity and long term system
performance. This paper focuses on the energy evaluation
outlined in IEC 61724-3. The evaluation compares measured
energy production to expected energy production given site
specific weather conditions and system specifications. The
procedure evaluates system performance over a full range of
environmental and operating conditions, generally over the
course of one year.

The energy performance index (EPI), defined as the ratio
between measured energy and expected energy, is
recommended to track long term system health [3,4,5]. A
system performance model, which can be simple or complex, is
used to estimate expected energy. While small systems might
use a simple performance ratio (PR) to model expected energy,
this method is influenced by seasonal temperature variations.
Even a temperature corrected PR can have variations which
skew results due to seasons and geographic locations. More
complex models, such as the Sandia PV Array Performance
Model (SAPM) [6], System Advisor Model (SAM) [7], and
PVsyst [8], take into account measured weather conditions
along with estimates for soiling and degradation. EPI is
computed for times when the system is available (in-service
EPI) and over the entire year (all-in EPI). System availability is
generally determined using inverter operation or other status
indicators.

The guidelines outlined in IEC 61724-3 are designed to be
flexible, allowing analysts and system operators to define a set
of requirements to quantify performance for a particular
system. The requirements can change depending on the system

size, instrumentation, and intended purpose of the analysis. In
general, a system performance model must be defined along
with data filtering methods and thresholds used in data quality
control tests. These decisions can have a large impact on the
resulting analysis. For example, it is important to apply data
quality control tests prior to running a performance model using
measured data. Poor quality data, related to sensor or human
error, must be properly filtered out when evaluating system
performance. Small gaps in data can be filled using a variety of
methods, including interpolation, using data from duplicate
sensors, historical data, or data generated using models.
However, larger data gaps might have to be eliminated from the
performance analysis. Duplicate sensors can also be used to
detect sensor drift or compute parameter variability. IEC
61724-3 includes example data filtering criteria to identify data
that is outside expected range, missing, associated with a dead
sensor, or changes abruptly. The filtering criteria should be
adjusted according to site specific conditions and system
instrumentation. After running a preliminary analysis, it is
important to assess the model and other assumptions used to
define system performance until the analyst and system
operator agree on a final analysis procedure. These decisions
can be challenging given the large amount of PV system data,
systems that collect different types of data, and the wide range
of possible data quality control issues.

This paper describes an application of the standards outlined
in IEC 61724-3 using data collected at identical PV systems
operating at four sites across the United States. Results are used
to evaluate system performance and track how data quality
control tests diagnose faults and system availability. The open
source software packages Pecos [9] and PVLIB [10] are used
for the analysis.

II. DATA

The data used in this analysis was collected as part of the
Regional Test Center (RTC) program managed by Sandia
National Laboratories (SNL). The RTC program collects data
at several sites across the United States, including Albuquerque,
New Mexico; Orlando, Florida; Williston, Vermont; and Las
Vegas, Nevada. Identical ‘baseline’ PV systems and weather
stations were installed at each site (Fig. 1). These systems are
used to test sensor operation and maintenance routines. Data
collection is periodically disrupted due to planned site and
system upgrades. For this reason, sensor failure and system
downtime is expected to be higher for these systems, as
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PV system at the Nevada RTC site. Identical systems are
located in New Mexico, Florida, and Vermont.

Fig. 1.

compared to production-level systems.

Each PV system is configured with two inverters, each with
one series-connected string of 12 Suniva Optimus 270 Black
modules. These modules have the following datasheet electrical
characteristics: Pmax =270 W, Vmp =31.2 V, Voc =38.5V,
Imp = 8.68 A, Isc = 9.15 A. The arrays all face South and are
tilted at 35°.

The weather station collects data for global horizontal
irradiance (GHI), direct normal irradiance (DNI), diffuse
horizontal irradiance (DHI), air pressure, wind speed, wind
direction, and relative humidity. For each string, DC voltage,
DC current, AC voltage, AC current, AC power, power factor,
frequency, reference cell irradiance, and reference -cell
temperature are recorded. Module temperature is recorded at 8
locations per string. Ambient temperature and POA irradiance
is also recorded at the site. Data collected in 2016 was used for
the analysis. Data was recorded at a 1-minute time interval,
resulting in approximately 25 million data points per site.

III. METHODS

The following section describes an application of IEC 61724-
3 to compute system performance at the four sites. The analysis
is carried out using Pecos [9] and PVLIB [10], both open source
software packages developed by SNL.

Pecos is used to analyze the quality of time series data,
subject to a set of quality control tests. Many of the features
included in Pecos were designed specifically for quality control
tests outlined in IEC 61724-3, including the ability to identify
data that is outside expected range, missing, associated with a
dead sensor, or changes abruptly. Additionally, Pecos includes
methods to include filters and composite signals in the analysis.
Filters can be used to smooth data and/or eliminate data
collected at specific times from quality control tests. Composite
signals are any type of new data generated using existing data
or models. Composite signals can be used to include
performance models or simple relationships in the analysis.

Time series data can be easily loaded into Pecos from a wide
range of formats, including from file (i.e. csv, excel) and
directly from databases (i.e. SQL). For this analysis, a years’
worth of data is loaded into Pecos for each site. Similar analysis
could be run in real-time (or near real-time) to help diagnose
system performance issues quickly. Daily analysis is

recommended to ensure systems record high quality data.
Yearly summary reports can then be performed to track long
term system health. Pecos can be installed from
https://github.com/sandialabs/pecos.

PVLIB is used to model expected system performance based
on measured weather conditions and to compute a data filter
based on sun position. Several performance models are
included in PVLIB, including the SAPM [6], single diode
model [11], and PVWatts model [12]. PVLIB can be installed
from https://github.com/pvlib/pvlib-python.

The following steps are taken to analyze energy production
for each site:

Step 1: Check for timestamp issues. When working with
time series data, it is important to check for and fix timestamp
issues before proceeding with analysis. Pecos includes methods
to check for missing timestamps, duplicate timestamps, and
timestamps out of sequence. These methods correct issues with
the timestamp and record issues in the final report.

Step 2: Preliminary data inspection: Visual inspection of
sensor data can help quickly identify systematic errors, and
define filters and quality control tests. Sensor data plotted as a
time-of-day versus day-of-year heatmap can help identify
shading issues, large data gaps, and upper and lower bounds for
quality control tests. An example heatmap is shown in Fig 2.
This figure shows POA irradiance at the Nevada site. No
persistent shading issues were noted based on the image and
missing data is observed in February and November (vertical
white lines). Pecos includes methods to create time-of-day
versus day-of-year heatmaps with superimposed time series
that show sun position or other attributes.
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POA irradiance heatmap for the Nevada site.

Fig. 2.

Step 3: Apply filters. Data collected at night or during low
irradiance conditions can introduce errors in the performance
evaluation. For this reason, data collected when the sun
elevation is less than 20 degrees was eliminated from the
analysis. PVLIB is used to compute sun position as a function
of site location and date-time. Additional low irradiance filters
could be added in future analysis.

Step 4: Add composite signals. Computing relationships
between different types of measured data and comparing
measured data to models can help identify issues with system
performance. The following composite signals are used in the



analysis: 1) DC power computed from DC voltage and DC
current, 2) inverter efficiency computed from AC and DC
power, 3) normalized efficiency computed from DC power and
POA irradiance, and 4) module temperature deviation defined
as the difference between each module temperature sensor and
the median value over all 16 module temperature sensors. When
multiple sensors are available, comparing a single sensor to the
median value can help identify sensor drift. An additional
composite signal, the power performance index, is computed in
Step 6. These composite signals are used in quality control tests
to check for anomalous conditions.

Step 5: Run data quality control analysis. IEC 61724-3
outlines basic quality control tests to check if data is outside
expected range, missing, associated with a dead sensor, or
changes abruptly. The methods in Pecos were designed to run
these tests. For this analysis, data that is missing for less than 2
hours was filled using a linear filter. Data that is missing for
more than 2 hours is flagged as missing. A sensor is flagged as
recoding data outside an expected range if the threshold
specified in Table I (column 2) is surpassed for more than 2
consecutive hours. The thresholds for air pressure are based on
expected air pressure, calculated from site elevation using
PVLIB. A sensor is flagged as dead if it changed by less than

TABLE I
Expected range and threshold values for quality control tests.
. Expected Dead sensor Abrupt
Variable range threshold change
g threshold

DC current and AC >0 and
current (A) <Imp-1.5 <0.0001

>0 and
DC voltage (V) < Vmp'N-1.2° <0.0001

>230 and
AC voltage (V) <250 <0.0001
DC power ™ and >0 and
AC power (W) <Pmp'N-1.2" <0.0001
Power factor >-land<1 <0.0001
Frequency (Hz) > 57 and <63 <0.0001
POA, DNI, GHI,
and ref cell g -?S%HOd = <0.0001
irradiance (W/m?)
DHI (W/m?) > -6 and < 500 <0.0001
. >P-0.97 and

Air pressure (mbar) “P1.03 " <0.0001 >25
Wind speed (m/s) >0and <32 <0.0001 > 10
Wind direction >0 and <360 <0.0001
Relative humidity >0 and <100 <0.0001 > 50
Ambient >30and <50 | <0.0001 >20
temperature (°C)
Module and ref cell
temperature (°C) > 30 and < 90 <0.0001 >20
Inverter efficiency™ >0.5and <1 >0.25
Normalized >0.8 and < 1.2 >0.25
efficiency
Module temperature
deviation (°C) ™ > -10and <10
Power*gerformance ~08and <12 > 025
index

“N is the number of series connected modules and P is the expected air pressure
based on site elevation
** Composite signal

the threshold specified in Table I (column 3) for 5 consecutive
hours. A sensor is flagged as changing abruptly if the value
changes by more than the threshold specified in Table I (column
4) in a 15-minute timeframe. These thresholds can be adjusted
to customize analysis. For each test failure, the sensor name,
along with the start and end time of each failure, and an error
flag is recorded in the final report.

Step 6: Compute expected power and energy production.
Expected energy is computed using actual weather data. If
weather data is unavailable, or is deemed unreliable given one
or more quality control tests run in Step 5, it is eliminated from
the energy calculation. The PVWatts DC model [12] is used to
compute expected DC power; the model was run using PVLIB.
Expected DC power is then converted to energy output. An
additional quality control test is defined to flag times when the
power performance index, defined as measured power divided
by expected power, is outside an expected range of 0.8 to 1.2
for more than 2 consecutive hours. As with the quality control
tests run in Step 5, test failures associated with the power
performance index are recorded in the final report.

Step 7: Compute metrics. IEC 61724-3 recommends
computing in-service EPI and all-in EPI. For this analysis,
several additional metrics were computed, including data
availability (DA), quality control index (QCI), and system
availability (SA). For each sample time, DA is the percent of
expected data that is recorded and QCI is the percent of
expected data that passed all quality control tests. The systems
used in this analysis do not include an inverter status flag that
indicate when the system is available. For that reason, SA is
based on the results of quality control tests associated with
power (AC and DC), inverter efficiency, normalized efficiency,
and power performance index. For each sample time, SA is 1 if
the quality control tests associated with these parameters all
passed and O otherwise. In-service EPI is the ratio between
measured energy and expected energy, computed when the
system is available. All-in EPI is the same ratio, computed over
the entire year. SA, in-service EPI, and all-in EPI are computed
for each string. If data is missing while the system is known to
be available, energy estimates could be made using historical
weather data during that time.

After completing these steps, the analyst and system operator
should review quality control test failures and performance
metrics. Adjustments can be made to the quality control
thresholds and performance model if significant issues are
identified, otherwise, the analysis should remain stable year-to-
year. Changes in the analysis should be clearly documented.
The thresholds and model input can be saved in Python scripts
that are used to run Pecos and PVLIB. These scripts can then
be rerun to reproduce results and for future analysis. It is noted
that several procedures recommended in IEC 61724-3 were not
included in this analysis. For example, historical data was not
used to compute predicted energy, systematic (bias) and
random (precision) uncertainties were not analyzed, cleaning
and calibration schedules along with grid availability was not



included in the analysis, and missing or erroneous data was not

1.00 o
replaced with data from other sources. These steps could be 075
included in future analysis. '
0.50
0.25 - _——y
IV. RESULTS 0.00 — qal
The RTC data was analyzed using the methods outlined
above. Preliminary analysis, run on a daily basis, indicated that 1.00 T ﬂ_ v ¥ v T
modules at all sites were underperforming by approximately 0.75
5%. This prompted a module flashtest at the New Mexico site. 0.50
The electrical characteristics were subsequently updated to the 0.25 —Tw =
following: Pmax =255.7 W, Vmp =30.9 V, Voc = 38.0 V, Imp 0.00 — SA String 2
=8.28 A, Isc = 8.74 A. The discrepancy with datasheet values
could be caused by light induced degradation or overrating. The 1.00
new values were used to estimate performance for the year. 0.75
For each site, time-of-day versus day-of-year heatmaps were 0.50
generated for each sensor reading. These figures were used to
identify shading issues, large data gaps, and define thresholds 025 — In-service EPI, String 1
listed in Table 1. No persistent shading issues were observed. 0.00 T Inservice EPL, String 2
A large gap in the data record was noted in Vermont between 1.00
the middle of April and early May. Other data gaps were 075 _, —
relatively short (a few days or less). Missing data was attributed
to sensor failure, system maintenance, and data transfer issues. 0.50
Table II includes annual average data availability (DA), 0.25 — All-in EPI, String 1
quality control index (QCI), system availability per string (SA), 0.00 — All-in EPI, String 2
along with measured energy, expected energy, in-service EPI, Jan_ Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
and all-in EPI for each site. Fig 3 and 4 illustrate DA, QCI, SA,  Fig.3. DA, QCI, SA, in-service and all-in EPI for Nevada.
in-service EPI, and all-in EPI throughout the year for the
Nevada and Vermont site. DA, QCI, and SA are reported as a 1.00 — T
daily average. In-service and all-in EPI are reported as a 0.75 |
monthly average.
DA was relatively high at all four sites with a few exceptions. 050
In Florida, data was missing periodically, mainly between the 0.25 — DA
middle of June and early October. As mentioned above, the 0.00 — Qd
Vermont site had a large gap in the data record, most of the data Loo
was missing over a 23-day period in the Spring.
QCI was also relatively high at all four sites. Note that QCI 0.73
can be greater than DA because it is the percent of available 0.50
data that passed all quality control tests. For example, at the 0.25 — s, string 1.
0.00 —— SA, String 2
TABLE II :
Annual DA, QCI, SA (per string), measured energy, expected 1.00 L
energy production, and EPI. 0.75 L
NM NV FL VT 0.50
DA 99% 98% 96% 95%
QCI 98% 99% 98% 92% 0.25 —— In-service EPI, String 1
SA, String 1 97% 85% 83% 72% 0.00 —— In-service EPI, String 2
SA, String 2 97% 96% 84% 72%
In-service measured 1.00
energy (kWh) 12310 | 11145 9019 5977 s — —'_|_|_,—_|_
In-service expected
energy (kWhl; 12441 11394 9459 6293 0.50
All-in expected 0.25 —— All-in EPI, String 1
energy (kah) 12571 12186 10318 7884 0.00 — All-in EPI, String 2
In-service EPI 99% 98% 95% 95% Jan_ Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
All-in EPI 98% 91% 87% 76% Fig. 4. DA, QCIL SA, in-service and all-in EPI for Vermont.




Nevada site, only 13% of the data was available between Feb
12 and Feb 17. Of the data that is available, 78% passed all
quality control tests. During that time, DC current sensors were
flagged as dead, with readings that changed by less than 0.0001
over 5 consecutive hours. At the Vermont site, QCI is
consistently around 95% due to unexpected abrupt changes in
normalized efficiency and a module temperature sensor that is
out of alignment with other module temperature sensors. In
April and May, QCI decreases to around 75% due to DC power
and current readings that are below 0 and several other sensors
that were flagged as dead. These issues were verified with
system operators.

The system is defined as ‘available’ if sensor data associated
with power (AC and DC), inverter efficiency, normalized
efficiency, and power performance index pass all quality
control tests. Using this definition, SA is reported per string. All
sites, with the exception of Nevada, have very similar
availability per string. In Nevada, String 1 DC power is very
close to 0 between April 1 and May 9. The quality control test
for DC power will not flag this as an error, however bounds on
normalized efficiency, inverter efficiency, and the power
performance index all indicate anomalous conditions during
that time. In Vermont, SA is highly variable in the winter due
to anomalous conditions in normalized efficiency, inverter
efficiency, and power performance index. SA at the Florida site
was similarly noisy, due to occasional low inverter efficiency.

In service EPI and all-in EPI were computed using measured
and expected energy. In New Mexico, in-service and all-in EPI
are both very high. In Nevada, Florida, and Vermont, in -service
EPI is slightly lower and issues with system availability
reduced the all-in EPI by 7 to 19%.

As part of this analysis, quality control tests identified
numerous issues throughout the year at all four sites. The tests
were able to accurately identify dead sensors, sensor drift, and
underperforming inverters. Pecos keeps a record of the sensor
name, start and end time of each test failure, and an error flag.
This information can be included in HTML generated reports,
saved to a file, or stored in a database. Graphics can be
generated which help pinpoint the data points that were
involved in an individual test failure. Examples are shown in
Fig 5. Each example shows one day of data along with issues
found using the quality control tests run as part of this analysis.
The gray region indicates times when sun elevation is < 20
degrees. This region is eliminated from quality control tests.
Green marks identify data points that were flagged as changing
abruptly, red marks identify data points that were outside
expected range. The top image shows a spike in normalized
efficiency at the New Mexico site. The middle image shows a
sudden drop in inverter efficiency at the Nevada site. The
bottom image shows a module temperature sensor that is
oscillating between normal and anomalous conditions at the
Florida site.

If a quality control test results in false positives, thresholds
and moving windows can be adjusted, filters used to eliminate

data from quality control tests can be modified, the minimum
number of consecutive failures needed to signal a warning can
be increased, and data can be smoothed before the quality
control test is run.
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Fig. 5. Example quality control graphics illustrating quality

control issues. Green marks indicate data points that were flagged as
changing abruptly, red marks indicate data points that were outside
expected bounds. The x-axis is in hours of the day.

V. DISCUSSION

System performance was evaluated at identical PV systems
operating at four sites across the United State using methods
outlined in IEC 61724-3. Pecos and PVLIB, both open source
software tools, were used in the analysis. These tools were used
to process and filter large quantities of data, run quality control
tests, compute expected energy production and system
performance, and generate reports. The Python scripts used to
run the analysis can be used to reproduce results and to compare
year-to-year performance.

The methodology was able to identify gaps in the data record
and anomalous conditions. Thresholds used in the quality
control tests were systematically adjusted based on discussions
with system operators and visual inspection of system data.
Future research will compare the method used to estimate data



availability, quality control index, and system availability with
system logs. While the methods result in similar analysis across
the four sites, several factors, such as variable system
availability in Florida and Vermont, require further
investigation. In addition to the yearly performance evaluation
discussed in the paper, short term capacity tests and daily
quality control analysis are recommended to evaluate
performance, minimize downtime, and ensure the collection of
high quality data.
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