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ABSTRACT

Longitudinal, multivariate datasets are intrinsic to the study of dy-
namic, naturalistic behavior. Statistical models provide the ability to
identify event patterns in these data under conditions of uncertainty.
To make use of statistical models, however, researchers must be
able to evaluate how well a model uses available information in a
dataset for clustering decisions and for uncertainty estimation. The
Gaussian mixture model is a prominently used model for clustering
multivariate data. However, it has only been recently extended to
longitudinal data, and useful visualization tools have yet to be de-
veloped in this context. In this paper, we develop novel methods
for visualizing the clustering performance and uncertainty of fitting
a Gaussian mixture model to multivariate longitudinal data. We
demonstrate our methods on eyetracking data and explain the useful-
ness of uncertainty quantification and visualization with evaluating
the performance of clustering models.

1 MODEL-BASED CLUSTERING WITH THE GAUSSIAN Mix-
TURE MoODEL (GMM)

Cluster analysis is the automated search for groups of related ob-
servations in a dataset. Groups of observations that are cohesive and
separated from other groups are identified. Finite mixture models,
in which each component probability distribution corresponds to a
cluster, provide a principled statistical approach to determining the
number of clusters and choosing an appropriate clustering method.
Models that differ in number of components and/or in component
distributions can be compared. By using a probabilistic model to
represent the clustering problem, we can use uncertainty quantifi-
cation to assess the variability in the performance of a clustering
model.

1.1 GMM for Independent and Identically Distributed
(i.i.d.) Data

We refer to “model-based clustering” as the use of (finite) mixture

models to perform clustering. We consider the Gaussian mixture

model (GMM), where the density of a random vector y can be
written as a mixture of G components as follows:
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where the gth component density is a multivariate normal distribu-
tion with mean i, and covariance matrix X,, and 7, > 0 such that

):g:l 7 = 1 are called mixing proportions. Suppose n p-dimensional
data vectors yy,...,y, are observed, independent and identically
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(i.i.d.) distributed, and all n are unlabelled or treated as unlabelled.
The complete-data likelihood for the mixture model is
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where z;¢ denotes the membership of observation i in component g so
that z;o = 1 if observation i belongs to component g and z;; = 0 oth-
erwise. The parameters of the GMM are estimated by an expectation-
maximization (EM) algorithm [2], providing a closed form estimate
of the probability that a sample i belongs to a group g, Z;;. The
value z;‘g of Z;; at a maximum of (2) is the estimated conditional
probability that observation i belongs to group g. The maximum like-
lihood classification of observation i is {|z;; = maxz}, }, so that
(1 —max, zl-*g) is a measure of the uncertainty in the clasmﬁcatlon [1].
The R package mclust [3] performs this model fitting.

1.2 GMM for Longitudinal Data

[4] propose an EM algorithm for fitting a GMM to longitudinal
data. The temporal correlation between observations is accounted by
the modified Cholesky decomposition [5,6] of the inverse covariance
matrix,
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where T is a unique lower triangular matrix with diagonal elements
1 and D is a unique diagonal matrix with strictly positive diagonal
entries. The linear least-squares predictor of ¥;, basedon ¥;_1, ..., Y1,
can be written as
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where & ~ N(0, 1), the ¢, are the (sub-diagonal) elements of 7" and
the d; are the diagonal elements of D. The density of an observation
y; in group g is given by
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The complete-data likelihood for the mixture model is given by
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The R package longclust [4] implements the EM algorithm to fit
this model. We can also take the value ng of Z;, at a maximum of
(5) to be the maximum likelihood classification of observation i is
{Jlz; = max, zj, } and (1 —maxg zj, ) as a measure of the uncertainty
in the clasmﬁcatmn [1]. However, the longclust currently neither
computes this uncertainty nor creates visualization plots.



2 VISUALIZATION AND APPLICATION TO EYETRACKING
DATASET

2.1 Eyetracking Dataset

Our interest in this problem is motivated by an interest in en-
hanced exploitation of eyetracking data. We focus on a dataset
collected by Sandia National Laboratories. The dataset consists
of eyetracking data collected from 16 human subjects. Each sub-
ject looks at various points in an image, and the locations that the
subject looks at is tracked in a one-hour long experiment, with pre-
determined locations popping up in the image over the course of
the experiment. A datapoint containing the spatial location of the
subject’s eye target is recorded every 17 milliseconds, so there are
25,000 sample points for the one subject throughout the four trials.

2.2 Existing Methods

The R package mclust fits a GMM to i.i.d. multivariate data
and clustering results and uncertainty. No such capability currently
exists in the R package longclust. Below in Figure 1 is a clustering
and uncertainty plot for eyetracking data described in the previous
section for one trial taken by one subject. From the plot below, we
see that the clusters drawn from the mclust package do not match up
well with the observed data because it does not factor in the temporal
correlation between observations.
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(a) BIC values of mclust models (b) Clustering results and uncertainty
Figure 1: BIC and clustering results and uncertainty plots for R pack-
age mclust applied to eyetracking data. The model chosen by the
highest BIC value (a) is a model with 20 clusters and parametrization
VVV. (b) consists of the clustering results and associated uncertainty,
which is represented by the ellipses.

Below in Figure 2 are the plots currently available in the longclust
package for longitudinal data applied to the same dataset. It is
unclear that the values in the time plots (Figure 2(b)) represent.
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(a) BIC values of longclust models

(b) Time plots

Figure 2: Currently available plots for R package longclust applied
to eyetracking data. The model chosen by the highest BIC value
(a) is a model with 12 clusters. (b) consists of time plots for the
12 clusters and appears to be the values for a parameter associated
with the 12 clusters over the running of the EM algorithm until
convergence.

2.3 Clustering and Uncertainty Plots for Longitudinal
Data

We create an analagous clustering and classification uncertainty
plot as the one available in the mclust package for longitudinal data.
We use the T and D matrices (computed by longclust) to estimate the
covariance matrix X, which is used to compute the uncertainty ellipse
for each cluster. Below in Figure 3 is the resulting clustering and
uncertainty plot. We see that by factoring in the temporal correlation
between observations, we get much better clustering results, as
the uncertainty ellipses encompass the data better and the ellipses
are thinner, which indicate lower classification uncertainty and the
GMM is a reasonable fit for the data.

Clustering and Uncertanty Plot

Figure 3: Clustering analysis of eyetracking data using a GMM fit
to longitudinal data.

3 CONCLUSIONS

Utilizing recently developed methods for clustering multivari-
ate longitudinal data via the Gaussian mixture model, we create
and demonstrate novel visualization methods for the clustering per-
formance and assessing the clustering uncertainty. We show how
the visualization methods can allow us to gauge the significant im-
provement in clustering performance and uncertainty that correctly
factoring in the temporal correlation between observations can bring.
Furthermore, we argue for the usefulness of these visualization
techniques to assess the performance of clustering models and the
potential to try alternative clustering models for a particular dataset.
We demonstrate our methods on an eyetracking dataset, but our
methods can be applied to longitudinal datasets in a wide array of ap-
plication areas, such as radar and surveillance, medicine, and finance.
The capability to visualize clustering performance and uncertainty
greatly enhances the ability to fully exploit all of the information
available in any dataset.
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