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Abstract—In this work, we approach topic tracking and meme
trending in social media with a temporal focus; rather than
analyzing topics, we aim to identify time periods whose content
differs significantly from normal. We detail two approaches. The
first is an information-theoretic analysis of the distributions of
terms emitted during each time period. In the second, we cluster
the documents from each time period and analyze the tightness
of each clustering. We also discuss a method of combining the
scores created by each technique, and we provide ample empirical
analysis of our methodology on various Twitter datasets.

I. INTRODUCTION

Social media platforms (Twitter, Facebook, etc.) allow users
to instantaneously publish small textual utterances. Taken
individually, these utterances might have little content and
provide little information. However, taken in aggregate, they
can provide insights into, for example, public health [1],
political sentiment [2], and personality [3].

We develop a framework which allows us to detect and
understand temporal anomalies in a collection of timestamped
documents, such as those produced on social media. More
explicitly, we identify time periods during which the produced
documents’ content differs drastically from the norm or shows
unusually high focus or intensity.

II. RELATED WORK

There has been a significant amount of research aimed at
analyzing the trends and dynamics of a corpus of timestamped
documents. These methods have been used to study trends
in a diverse collection of corpora, including those consisting
of scientific papers, historical speeches, news stories, and
social media posts [4]-[13]. Although there are numerous such
techniques, they can be broken into roughly two categories.

The techniques of the first category, generally known as
topic detection and tracking (TDT) algorithms, incorporate
temporal data into traditional topic modeling algorithms. Some
of these algorithms use predefined categories and supervised
learning techniques to classify documents into one of the
predefined categories [4]. Other techniques create vectors
from each document and use traditional unsupervised cluster-
ing algorithms to produce custom categories [5]. Still other
TDT algorithms tackle topic detection and tracking using
probabilistic Bayesian modeling techniques. Some of these
Bayesian models reflect a belief that topics change slightly
over time [6]—[8]; others associate each topic distribution with
a temporal distribution to reflect an assumption that topics
experience temporal birth and death [9].

The second category of trend-identifying algorithms consists
of techniques which generate a set of memes and the periods of
time when each meme is considered important. For example,
Kleinberg et al. measure the importance of a meme by fitting
an infinite automaton to the temporal distribution of mentions
of that meme [10], [11]. He and Parker construct a physical
model of importance using proxies for a meme’s mass and
velocity derived from the temporal distribution of mentions of
a meme and the context in which the meme occurs [12]. Swan
and Allan extract important terms from temporal slices of a
corpus using a 2 significance test [13].

Unlike the methods developed in this paper, the algorithms
discussed above tend to focus more on the topics and content
being tracked and less on the relative importance of different
periods of time. Our focus is the identification of time periods
with unusually high or anomalous trendiness. Moreover, our
techniques satisfy two properties which allow them to function
well with minimal prior configuration. First, our methods
are unsupervised; instead of specifying categories or memes
to be tracked, we discover both anomalous time periods
and interesting textual markers which provide insights into
the nature of the anomaly. Second, our methods are largely
independent of the arrival rate of documents; we assume that
any data we see has been sampled from a larger distribution,
and we would like our methods to be able to accommodate
differing sample sizes and sampling rates.

III. METHODS

In this section, we discuss two techniques for studying
term and topic trends from the perspective of identifying
anomalous time periods. The first technique focuses on the
variation of term distributions and highlights time periods
whose term distributions differ drastically from baseline. The
second technique uses clustering to construct a rough metric
for topic coherence, which we expect to be higher when an
unusually large percentage of documents share a topic.

We assume that we have time periods ¢4, ts, . . . , t, and asso-
ciated corpora Ci,, ..., C}, of documents, where C;, consists
of all documents produced during time period t;. We also
assume that we have a corpus Cjy which serves as a “baseline”
for our term distribution analysis. In our experiments, we use
as the baseline corpus Cy the union Cp = Cy, U---UCy .

A. Term distribution analysis

Our first technique is an information-theoretic analysis of
the distributions of terms seen across varying time periods.



For each term w, we construct a probability p;(w) associated
with the term w and the corpus C} via one of the following:
o Document frequency: p:(w) is the proportion of docu-
ments in C} containing w.
e Term frequency: p;(w) is the proportion of all terms in
C; which are equal to w.
o Weighted term frequency: p;(w) is a document-weighted
proportion of all terms in C; constructed so that all
documents are weighted equally:

number of words in d equal to w
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number of words in d
deC,

To measure the extent to which {p;(w)},, (i.e., the set of
all values p;(w) for varying w while keeping ¢ fixed) differs
from the baseline probabilities {po(w)}., wWe use a variant
of the Kullback-Leibler divergence. Because the Kullback-
Leibler divergence is asymmetric, it is common practice to
use the Jensen-Shannon divergence, a symmetrized version of
the Kullback-Leibler divergence, when constructing a distance
metric on probability distributions. However, we define an
antisymmetric version of the Kullback-Leibler divergence via

AKL (ptllpo) = KL (ptlpo) — KL (pollpe)

A

When analyzing the trends of a corpus C}, we find it
useful to analyze the term-wise contributions to AK L (p||po)-
We thus define the pointwise antisymmetric Kullback-Leibler
(PAKL) score of a term w as

PAK Ly o) () = (pe(w) + po(w)) log (Ziﬁii) |

The value PAK L, |p,)(w) satisfies the following properties:

1) PAKLp,|po)(w) is positive if pi(w) > po(w) and is

negative if p,(w) < po(w).

2) PAK Ly, |p,)(w) nears 0 as p;(w) approaches po(w).

3) |PAK Lp, |1po)(w | increases both when p;(w) stays

constant while pt( ) approaches 0, and when pg(w)
stays constant while p;(w) approaches 0.

Thus, a term’s PAK L scores reflect whether the relative
frequency of a term is increasing, decreasing, or staying
constant in time. To construct a score which measures the
relative trendiness (resp. “anti-trendiness”) exuded by C, we
can sum all PAK L scores, all positive (resp. negative) PAK L
scores, or the most n positive (resp. negative) PAK L scores
in each corpus C;.

It is the third property above which is key to our analysis. If
we had instead chosen to analyze a “pointwise” version of the
Kullback-Leibler divergence, we might have defined a score
PKL(pthO)(IU) via

PK L, |Ipy)(w) = pe(w) log (5;((5;) )

Note, however, that PK L, |»,)(w) is unable to differentiate
between terms w such that p;(w) & po(w) and terms w such
that p;(w) = 0, since in both cases, PK L, |,)(w) = 0.

B. Cluster coherence

Our second approach to the temporal analysis of a set
of documents is based on the idea that we can construct
tighter clusters of documents when there is a heightened
focus on a relatively small set of concepts. This approach
consists of obtaining vectors for each word, combining these to
create a vector for each document, and clustering the resulting
document vectors.

We acquire word vectors by running GloVe, an algorithm
which uses co-occurrence statistics of the terms in a large
corpus and a weighted least-squares model in order to derive
a vector for each term [14]. Since our ultimate goal for these
vectors is to construct and cluster a set of vectors from C;,
the dimensionality of the vectors should be sufficiently small
so as not to be hindered by the curse of dimensionality.

Next, we derive a set of vectors to represent the content
of the target corpus C,. For each document d € C}, we
construct a “document vector” v(d) by taking a weighted and
normalized sum of the word vectors for words occurring in d.
Explicitly, we define

o(d) =Y tfg(w)idf o, (w),

wed

where ¢ f ;(w) denotes the number of times the term w occurs
in document d, and idf -, (w) denotes a smoothed version
of inverse document frequency of w in Cy. We define the
document vector for d as v(d) = v(d)/||o(d)||. This normal-
ization reflects our belief that documents with similar content
but differing lengths should be treated as similar. We use the
set of document vectors v(d) as our set of “corpus vectors.”

We then cluster the corpus vectors using spherical k-means
clustering, which can be interpreted as a hard von Mises-
Fisher (VMF) mixture model where all mixture components
are forced to have the same concentration [15]. To construct
a score measuring cluster coherence and tightness, we use the
concentration x derived from reinterpreting spherical k-means
clustering as a VMF mixture model. For this, we rely on the
techniques and formulae presented and explained in detail in

[15], [16].
C. Weighted probabilistic fusion

We describe a technique for fusing the scores discussed
above. Our technique is similar to that discussed in [17].

For each corpus C;, we assume that we have generated m
different scores 2;1,...,2 m using the techniques discussed
above. We assume that the values {z;;}, are sampled from
some distribution with cumulative distribution function (cdf)
F;. We approximate I; using either the empirical cdf Ft(emp)
or by using the cdf Ft(’B ) of a beta distribution fit to the scores
{2t,j}, (after scaling the z; ; to lie strictly between 0 and 1).

We then construct fused scores s; via
ch log (1 = Fjj(zt,5))

where ¢; > 0 denotes the relative weight we wish to give
the jth score generating technique. In our experiments, we



choose c; so that the scores generated from term distribution
analysis (Section III-A) have combined weight equal to that
of the scores generated by analyzing cluster coherence (Sec-
tion III-B). Finally, we fit a gamma distribution with cdf G to
the set of fused scores {s1, ..., S, }. The value G(s;) quantifies
the significance of the events occurring during time period .

Our model assumes stationarity; that is, each cdf Fj is
assumed to be time invariant. If our data spans a sufficiently
large period of time, this assumption may be inappropriate.
In such circumstances, we fit a separate cdf F; ; for each
score j and time period ¢ from the scores {zr;} , where
T ranges over a set of time periods which are temporally
proximal to the target time period ¢{. We then calculate s,
using the cdfs {F; ;} ;. We call the fusion technique described
in this paragraph “windowed fusion” in contrast to the original
“global fusion” technique presented above.

IV. EXPERIMENTS
A. Data

In total, three datasets are considered. We first apply our
algorithm to TwitterParisEnglish, which consists of 50,000
tweets per day sampled uniformly at random from all English
tweets acquired from the Twitter Streaming API from October
11, 2015 to November 29, 2015. Note that the sampling period
for this dataset includes both November 13, 2015, the date
of major terrorist attacks in Paris, France, and November 26,
2015, the date of the United States holiday Thanksgiving.

Next, we use the Twitter Search API to acquire datasets
consisting of all tweets emitted by specified users. The dataset
TwitterUSUniversities consists of all 4.2 million tweets emitted
from official Twitter accounts of 2,300 United States univer-
sities from May 2014 to December 2016, and the dataset
TwitterOlympics contains all 1.1 million tweets emitted from
the accounts of 1,200 Olympians and Olympics professionals
(e.g., coaches, sports journalists) from October 2014 to De-
cember 2016.

For all analyses, we use 25-dimensional GloVe vectors
trained on 50 million English tweets sampled from the Twitter
Streaming API from March 2015 to July 2015.

B. Results

We first run a PAK L analysis (cf. Section III-A) for our
TwitterParisEnglish dataset using the “document frequency”
option, segmenting our corpus by day. The terms with the
highest PAK L scores for select days can be seen in Table I.
We include terms from both uneventful days (Oct. 26, 2015
and Nov. 4, 2015) and anomalous days (Nov. 13, 2015 and
Nov. 26, 2015). We note that the top PAKL scores for
anomalous days tend to be higher than those for normal days.

We construct subcorpora of TwitterParisEnglish by varying
the number of tweets per day between 10,000 and 50,000. We
observe surprisingly little variation in our scores (graphs not
included due to space limitations) and conclude that our score
generation techniques are largely invariant to sampling rate.

For the TwitterParisEnglish dataset, we construct four
PAKL scores by summing, for each day, all PAK L scores,

TABLE I
TOP WORDS FOR SELECT DAYS AND THEIR ASSOCIATED PAK L SCORES
FROM TwitterParisEnglish.

Oct. 26, 2015 Nov. 4, 2015
forevermore 0.0286 #aldubl6thweeksary 0.0203
#pushawardslizquens  0.0154 i 0.0110
#aldubpredictions 0.0149 #showtimehousemates  0.0103
the 0.0149 that 0.0085
#aldubnewbeginnings  0.0129 it 0.0083
Nov. 13, 2015 Nov. 26, 2015
paris 0.1448 thanksgiving  0.1743
in 0.0682 thankful 0.1159
#prayforparis  0.0582 happy 0.0692
the 0.0572 #mtvstars 0.0602
#madeintheam  0.0485 for 0.0402
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Fig. 1. Fused scores for TwitterParisEnglish using F®) and global fusion.

all positive PAK L scores, and the highest 50 and 200 PAK L
scores. We also acquire cluster scores by constructing 9
clusterings, each with k = 50 clusters. We weight the scores
so that the PAK L and clustering scores each account for 50%
of the total fused scores. Fig. 1 depicts these fused scores, with
dashed vertical lines denoting the date of the Paris attacks and
Thanksgiving, and a dashed horizontal line indicating the 10%
significance level.

For the TwitterOlympics and TwitterUSUniversities datasets,
fusion is performed similarly with the following changes to
account for the fact that these corpora are smaller in general
than TwitterParisEnglish. First, we segment these corpora by
week rather than by day. We also construct four PAKL
scores, but construct scores by summing the highest 100 and
20 PAKL scores instead of the highest 200 and 50 scores.
Finally, we run our clustering score generators with £ = 25
instead of £k = 50. We again use dashed horizontal lines to
indicate the 10% significance level.

For TwitterOlympics, we produce fused scores using both
F®) (Fig. 2) and F¢™) (Fig. 3). Although these graphs have
very similar shapes, these graphs display the general trend that
fusion using F'® tends to produce fewer significant events
than fusion using F(*™) The three periods in Fig. 2 with
significant scores correspond to the various athletic events in
August 2015, the 2016 Olympic trials, and the 2016 Summer
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Fig. 2. Fused scores for TwitterOlympics using F(8) and global fusion.
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Fig. 3. Fused scores for TwitterOlympics using F™P) and global fusion.

Olympics.

For TwitterUSUniversities, we present a graph of the fused
scores created using windowed fusion (Fig. 4). For this anal-
ysis, we fit cdfs F; ; for the jth score generating technique
and time period ¢ from the scores generated by the jth score
generating technique for the 15 time periods before ¢ and
the 15 time periods after ¢t. With this modification, we see
peaks for both the 2014-2015 school year and the 2015-2016
school year corresponding to the beginning of the school year,
Thanksgiving break, Winter break, and the end of the school
year.

We note that we have found it beneficial to fuse the cluster-
ing scores with the PAK L scores, rather than relying on either
alone. For example, the first peak in Fig. 2 corresponding to

Score
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Nov 2016

May 2014 May 2016

Fig. 4. Fused scores for TwitterUSUniversities during 2014-2016 using F ()
and windowed fusion.

the August 2015 athletic events can be attributed more to clus-
tering scores than PAK L scores. During these events, PAK L
scores barely rise above baseline; since each sport has its own
world championship, there are no key terms with abnormally
high relative frequency. Because the trending pattern of the
terms associated to individual world championships cannot
be differentiated from typical trending patterns, the PAKL
scores do not register as abnormal. However, because all terms
related to sport and competition have similar vectors, the high
frequency of tweets related to competition causes abnormally
high cluster coherence scores.
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