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Sandia’s Z Machine has delivered up to 27MA in 100ns, ()
but can also lose “5MA depending on target dynamics
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Decreased load current through parallel MITLs and current-
adding convolute negatively impacts all Z experiments

= Achievable pressure profiles in dynamic material properties
= Radiated power for radiation sources
= Fuel compression for inertial confinement fusion

Losses occur in final 1’ of MITL in the dual post-hole convolute
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Z Simulations for wire array (left), MagLIF (right) experiments show

See B. T. Hutsel discussion of Z

divergence in Z stack and load current (apparent loss).
current loss: Poster Session 2! ﬁ




To date, the mechanisms of Z Current Loss are M
neither fully understood nor diagnhosed \L\L
n~ ‘IO16 cm3

= Magnetic pressure from high current

n ~ ‘IO160m3
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= Uninsu | ated ions stream across gap Spectroscopy in DPHC reports apparent closure velocity ~35-50 cm/ps (Gomez et al., Phys. Rev. Accel.
Beams 20, 010401 (2017). This value greatly exceeds ~1-2cm/us in MITL literature.

= |Jon enhancement occurs from space
charge neutralization by sheath flow

Particle-in-cell calculations of
DPHC show plasma flowing along
streamlines into post-hole region
observed by spectroscopy above

= Collisional sheath electron migration,
early deposition of negative ions may
quickly increase anode temp

D. Rose, et al., Phys. Rev. Accel.
Beams 18, 030402 (2015)

= The DPHC is a complex 3D geometry
that defies treatment with classical
See A. Fierro presentation

MITL descriptions on Current Loss Physics —
Poster Session 3!




We have fielded a new diagnhostic to sample e
charged particle fluence incident on anode posts

= We have embedded electrodes inside convolute posts
to measure charged particle species shunted to anode
= Faraday Cup in an Anode Post — an FCAP is born!

= Unfiltered probes collect all species (e’, negative ions)

= Filtered electrodes provide opportunity to isolate ion
species and low-energy electrons

= We can design custom anode posts with apertures to
sample different areas of the convolute

LOS aperture into convolute
$2.5mm — 3mm
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(left) | Filtered FCAPs (left), top-view of 2.03mm tungsten electrode (left), view from bottom as
2.03mm electrode (right) electrodes within (right) installed in anode post (right)




FCAPs use apertures to spatially collimate
particle fluence in different areas of convolute

“Null” (no LOS)

“Downstream” FCAP observes same region in “Upstream” FCAP is nominally aligned to measure
post-hole convolute as previous SVS work non-insulated current in magnetic null




Copper and Tungsten electrodes collect electrons; M
copper shim filters negative ions, low-E electrons

Electron penetratlon depth (CSDA) for Cu W electrodes
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25um Cu sufficient to stop ~2MeV H- ions (PSTAR)




Downstream post-hole measurements highlight plasma =,
dynamics that vary with initial load inductance

Downstream FCAP data for 2.03mm electrodes, MagLIF Z2914

Unfiltered downstream FCAPs from Low-Lo, nested wire arrays
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High-L,load shows unexpected energy discrimination with
varying filter thickness, possible azimuthal asymmetry

FCAPs on nested (OD/ID) wire-array experiments
suggest repeatable plasma dynamics in convolute




DPHC magnetic field topology introduces magnetic

nulls that provide non-insulated electron flow to posts
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Experimental data supports a narrow magnetic null =l
that does not carry majority of lost current

Measurement of moving magnetic null from Power Flow 17a: Z3086

* Tungsten electrodes reduced collection area,
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Ambiguities in interpretation exist, and must be Gz
addressed to build confidence in results

= |oss of signal / signal cutoff may be attributable to several phenomena

= Bending out of aperture due to onset of magnetic insulation (or movement of magnetic null)
= |on beam current ablates filter or probe material; shorts measurement locally

= High energy electrons are ranging through detector

= Probe voltage exceeds 1-2kV on highest current density shots! Flashover problems?

= Blackbody radiation from cathode generates photoelectric emission

= Emitted photocurrent partially cancels negative particle currents
= Recent data with biased FCAP-like diagnostic suggest bright blackbody radiation in final power feeds
= Positive perturbations have been observed on unfiltered FCAPs following loss of signal

= Need to expand dataset to account for other variables
= Azimuthal asymmetry in post-hole plasma dynamic behavior
" Probe alighment to aperture
= Alignment of incident current to aperture



Future Work and next steps @

= Design experiments to remove sources of ambiguity in data interpretation

= Fielding the diagnostic on subscale experiments at other accelerators

= |ndependently confirm presence and magnitude of negative ion beam current with
additional diagnostic
= |n-post passive magnetic spectrometer has been designed and is ready for testing!

= Resolve electron energy distribution using multi-conductor FCAP configurations and
compare to expectations from MITL literature
= Calculate energy deposition into anode surfaces and estimate turn-on time (AT> 400K)

= Correlate observed plasma behavior to target and convolute electrical dynamics
= System L, and dL/dt certainly affect convolute voltage. What will FCAPs see?




Questions?




