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Introduction

>

Research in storage for Exascale
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Operating Expense

Reduce Energy Consuption

High Availability and low data loss

Can GPU Accelerators increase erasure coding performance?
What is the impact on reads with many erasures?

Can GPU erasure coding meet 1 GB/s bandwidth per File
Transfer Appliance (FTA)?
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Trinity Storage Stack
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Figure: Hierarchy of HPC storage stack used by Trinity. Data velocity
increases towards the top of the stack while the life time is lessened.
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Ceph Interface to Gibraltar

GPU Erasure Coding Module

Interface to the Gibraltar Library

in the Ceph Plugin
Gibralter Gibraltar
Ceph
erasure coding CUDA
cal
return plugin return encode/decode

Bufferlistisdivided into k datashards
and m coding shards
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Ceph Bufferlist Object

Figure: Ceph calls the erasure coding module with a Bufferlist object
containing the stripe to be written to the object. The Plugin divides the
Bufferlist into kdata shards and adds mcoding shards. Gibraltar is called to

perform the coding or recovery.
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Experiment Configuration

Compute Platform for Measurements

Table: Dell R730 with GPU Configuration

CPUs 2 Xeon E5-2650v3 @ 2.3 GHZ (HT-enabled: 40 threads)
RAM 128 GB 2133 MT/s RDIMM
Network 2 port Mellanox ConnectX-3 MCX354A-FCBS

Intel X520 DP 10Gb DA/SFP+, 1350 DP 1Gb Ethernet
GPU NVIDIA® K40m GPU

System Drives 2 300GB 10K SAS 2
2 200 GB INTEL SSDSC2BG20 SATA
2 400 GB TOSHIBA PX02SMF040 SAS 3

Walker Haddock, Matthew L. Curry, Purushotham V. Bangalore, Anthony Skjellum | GPU Erasure Coding for Campaign Storage



Encoding Benchmark

Compare Gibraltar with ISA-L

Erasure encoding
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Figure: Erasure coding bandwidth results with increasing number of shards.
Coding shards are held to a ratio of 1 coding shard to 5data shards.
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Decoding Benchmark (1)

Compare Gibraltar with ISA-L with 1 Erasure

Erasure decoding, 1 erasure
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Figure: Erasure recovery bandwidth results with increasing number of shards
and 1 erasure. Coding shards are held to a ratio of 1 coding shard to
5 data shards.
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Decoding Benchmark (2)

Compare Gibraltar with ISA-L with 4 Erasures

Erasure decoding, 4 erasures
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Figure: Erasure recovery bandwidth results with increasing number of shards
and 4 erasures. Coding shards are held to a ratio of 1 coding shard to
5 data shards.
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Shard Size vs. Sharding Degree

Shard Size
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Figure: Shard sizes used in the erasure coding and decoding measurements.
Higher degrees of sharding produce smaller shards.
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» The Gibraltar plugin exceeded the 1 GB/s Trinity bandwidth
requirement with all degrees of sharding measured while ISA-L
falls behind after 20 shards.

» The Gibraltar plugin out performed the ISA-L library while
encoding for all sharding degrees.

» The Gibraltar plugin showed no performance degredation with
greater erasures while the ISA-L performance slowed down.

» Based on these measurements, the Gibraltar plugin would be
capable of providing 1 GB/s full duplex performance per File
Transfer Appliance with multiple erasures on read.

» Smaller shard sizes mean lower bandwidth requirements to
OSDs. Fan out data over more disks.
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