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Outline

• Materials role and requirements in two-step cycles
• Key efficiency drivers
• Achieving low thermal reduction pressure
• Electrically forcing reduction and water splitting
• Increasing temperature
• Fantasy materials
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Key Material Requirements: Reactive Oxide
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Key Material Requirements: Reactive Oxide
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Key Material Requirements: Reactive Oxide
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Key Material Requirements: Steam
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• Materials role and requirements in two-step cycles
• Key efficiency drivers
• Achieving low thermal reduction pressure
• Electrically forcing reduction and water splitting
• Increasing temperature
• Fantasy materials
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Maximizing Efficiency: Solid/Steam Heating 
Balance and a Low Reduction Pressure

Efficiency is the highest when:
• Oxide and steam heating loads are roughly equal
• Thermal reduction pressure is low
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O2 Pressure Limits: Flow Volume and Speed
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Staged Reduction Reactor for Low Pressure

Incrementally pumping O2 reduces the overall flow volume and velocity
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Staged Reduction for Low Pressure
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Efficiency is the highest when:
• 10x pressure decrease possible with as few as 5 chambers
• Decreased pump work and size



Vacuum and Staged Reduction in Practice
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• Materials role and requirements in two-step cycles
• Key efficiency drivers
• Achieving low  thermal reduction pressure
• Electrically forcing reduction and water splitting
• Increasing temperature
• Fantasy materials
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Ceria, TR=1773K Ceria, TR=1673K
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Playing With Materials Properties
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Family of efficiency curves for a
CeO2 reactor.

Ceria, TR=1773K
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Ceria-like, reducing
at 10x the pO2

Ceria-like, reducing
at 10x the pO2

and 100K lower TR

Ceria-like, reducing
at 1000x the pO2

and 150K lower TR

Ceria, TR=1773K



Cogeneration

0

5

10

15

20

300 500 700 900

E
ff

ic
ie

n
c

y
 %

DNI (W/m2)

System

Hydrogen Contribution

• Electricity production from waste heat can offset H2 cost.

– Ratio of H2:Electricity dependent on DNI

– System efficiency is more complex

– Impact of high-temperature waste heat amplified by integration with CSP 
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Summary/Interesting questions

• Materials with low  pose a mass flow challenge

• Optimal T can be found to maximize efficiency

• Thermal reduction pressure limited by O2 flow

• A >10x pressure decrease feasible in staged reduction

• Best results by combining Topt, staged pumping and 
advanced reactive oxides

• Future advances in receiver technology for higher TR?

• Advanced materials?

• Cogeneration?
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Questions?


