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Two-Step Thermochemical Fuel Production

A theoretically simple process
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Key Material Requirements: Reactive Oxide
How much CeO, per mole H,?

solar input
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The reversible oxygen capacity can be very low!
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Key Material Requirements: Reactive Oxide

How much CeO, per mole H,?

solar input
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A low reversible oxygen capacity leads to a very high oxide/H, ratio and
excessive oxide mass flow and heat recovery requirements
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Key Material Requirements: Reactive Oxide

How much CeO, per mole H,?

solar input
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A low reversible oxygen capacity leads to a very high oxide/H, ratio and
excessive oxide mass flow and heat recovery requirements
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Key Material Requirements: Steam

How much steam per mole H,?

solar input
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Low AT or high reduction pressure leads to a high steam/H, ratio
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Materials role and requirements in two-step cycles
Key efficiency drivers

Achieving low thermal reduction pressure
Electrically forcing reduction and water splitting
Increasing temperature
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Maximizing Efficiency: Solid/Steam Heating
Balance and a Low Reduction Pressure
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Efficiency is the highest when:

 Oxide and steam heating loads are roughly equal

 Thermal reduction pressure is low
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O, Pressure Limits: Flow Volume and Speed

Is 1Pa accessible?
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Staged Reduction Reactor for Low Pressure

multiple thermal
reduction stages
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Incrementally pumping O, reduces the overall flow volume and velocity
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Staged Reduction for Low Pressure
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10x pressure decrease possible with as few as 5 chambers
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Vacuum and Staged Reduction in Practice

15 ft = 4.56m
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Vacuum and Staged Reduction in Practice
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Vacuum and Staged Reduction in Practice
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Playing With Reduction Temperature
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Reactor Efficiency ng [%]

Playing With Materials Properties
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Reactor Efficiency ng [%]
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Playing With Materials Properties
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Cogeneration
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e Electricity production from waste heat can offset H, cost.
— Ratio of H,:Electricity dependent on DNI

— System efficiency is more complex

— Impact of high-temperature waste heat amplified by integration with CSP
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Summary/Interesting questions

Materials with low Ao pose a mass flow challenge
Optimal AT can be found to maximize efficiency
Thermal reduction pressure limited by O, flow

A >10x pressure decrease feasible in staged reduction

Best results by combining AT, ,,, staged pumping and
advanced reactive oxides

Future advances in receiver technology for higher T;?
Advanced materials?
Cogeneration?
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