ATP: Data

6 X 1000 L replicate ponds in 5 geographically
distinct locations

Nannochloropsis oceanica
Chlorella sp DOE 1412
Desmodesmus
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We sequenced and analyzed ~1200 sequences for
a full year of operations of ATP3 ponds in 2014
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We can map and understand
these microbial ecology
networks

Machine learning methods can

explain the variation in microbial

ecology between sites, seasons
and strains
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And using advanced machine learning algorithms find
good characters vs bad in the microbial consortia

Crash Signature
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Cross-validated tree showing the
species determining the signature of

crash ponds ‘}YW""’”“%
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This current strategy captures the
signature of the crashed ponds with 87%
nnnnn el eras| accuracy

Identification of indicator species may

/\ serve as a early warning for incipient
crashes



