SAND2017- 4550C
Proceedings of the 2017 Winter Simulation Conference

W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

A NOVEL APPROACH TO EXPONENTIAL SPEEDUP OF SIMULATION EVENTS IN
WIRELESS NETWORKS

Anand Ganti Uzoma Onunkwo
Department of Advanced Systems Department of Advanced Systems

Sandia National Laboratories Sandia National Laboratories

Albuquerque, NM 87185, USA Albuquerque, NM 87185, USA

Richard Schroeppel Michael Scoggin
Department of Quantum Information Sciences Department of Hardware/Software Contract Support

Sandia National Laboratories Sandia National Laboratories

Albuquerque, NM 87185, USA Albuquerque, NM 87185, USA

Brian Van Leeuwen

Department of Cyber Security Initiatives
Sandia National Laboratories
Albuquerque, NM 87185, USA

ABSTRACT

We demonstrate a new approach that yields exponential speedup of communication events in discrete event
simulations (DES) of mobile wireless networks. With the trending explosive growth of wireless devices
including internet-of-things devices, it is important to have the capability to simulate wireless networks at
large scale accurately. Unfortunately, current simulation techniques are inadequate for large scale network
simulation especially at high rate of total transmission events due to poor performance scaling. This
has limited many studies to much smaller sizes than desired. We propose a method for attaining high
fidelity DES of mobile wireless networks that leverages (i)path loss of transmissions and (ii)the relatively
slower topology changes in a high transmission rate environment. Our approach guarantees a runtime of
k(r)O(logN) per event, where N is the number of simulated agents, r is a factor of maximum transmission
range, and k(r) is typically constant obeying k(r) < N.

1 INTRODUCTION

Wireless networks are ubiquitous. By wireless networks, we refer to not only network of wireless devices
but any network with significant number of wireless devices. The de facto, cost-effective method for
studying wireless networks is the use of discrete event simulation (DES). A DES of wireless networks has
two fundamental event classes: (i) mobility and (ii) communication. Mobility events change the motion
velocity of simulated agents, while communication events result in data transmissions and receptions for
simulated agents. The simulation of these events poses challenges that are generally not applicable to wired
network simulations. The shared medium access for wireless networks and topolgy changes, imply that
their simulators need to cater for much more complicated channel models and interference from shared

Ganti, Onunkwo, Schroeppel, Scoggin, and Van Leeuwen

usage of the communication channel as well as node mobility. Despite these complications, DES remains
the only feasible cost-effective approach for understanding the performance of protocols and applications
in wireless networks.

The standard approach for simulating wireless networks is inadequate, as it takes prohibitively long to
simulate more than a few hundred wireless nodes (agents) on a day scale. In a wireless mobile network with
N simulated agents, processing a mobility event just involves updating the motion parameter of a station,
such as velocity, and this can be executed in time O(1). However, a data transmission event (communication
event) has a complexity of O(N) since it involves querying every agent for potential data reception. Some
simulations will schedule a reception event at each agent irrespective of its distance to the transmission.
This is due to the inherent broadcast nature of wireless mediums. It is the O(N) cost per communication
event that limits current wireless simulations to hundreds of nodes over a day scale because each node can
generate thousands of packets per second. Even if many computing cores are used to attain some speedup
by implementing parallel DES (PDES), the scaling of such simulations is meager because the dynamics
in wireless environment are not easily amenable to efficient parallel implementation: high inter-processor
communication to per-processor computation ratio. In wireless networks, the average rate of motion events
is generally much lower than the average rate for communication events. This implies that we can speed up
the simulation substantially if we lower the processing cost of communication events even at the expense
of a higher cost for motion events.

We propose an approach that exponentially speeds up the runtime of communication events from O(N)
to O(logN) at the cost of increasing the runtime of motion events from O(1) to O(logN). The speedup
allows for high fidelity simulations of much larger network sizes that would otherwise be too prohibitive
in wall-clock time to simulate with current approaches. In the rest of this paper, we describe and analyze
an approximation algorithm for faster simulation of wireless networks, called KMsim (pronounced as
kim-sim), which relies on two tree structures: a k-d tree and a modified min-heap (MMH). We then describe
various simulations that we performed and discuss their results showing the improved runtime performance
without significant loss of simulation fidelity. Finally, we conclude and propose other ideas for speeding
up (parallel) discrete event simulation of mobile wireless networks.

2 PROBLEM STATEMENT

Consider a wireless network with N stations!, where the stations’ positions are assumed to change contin-
uously. Most wireless communications systems today are RF-based and inherently occur over broadcast
medium. Hence, transmission events by stations cause reception events at every station. A data packet
is successfully received at a station if the signal-to-interference-plus-noise ratio (SINR) is above a certain
threshold. The question is:
How can one simulate communication events faster than O(N) in a DES?

In the standard approach, which we call BFsim (pronounced bif-sim), a mobility event just involves updating
the motion parameters of a station, which can be executed in constant time, O(1). A packet transmission
event has a runtime complexity of O(N) because it involves scheduling a packet reception event at every
single station. When executing a reception event, the simulation decides a packet reception is successful
if the SINR is above a fixed threshold.

In practical wireless networks, in order to maximize throughput, stations typically transmit at low
power. The transmit power is large enough to lead to successful reception at a short range (for most
mobile ad hoc networks (MANETS), this range is usually less than 100 meters) and small enough that it
causes very little interference at moderately larger ranges. Furthermore, the total number of simultaneous
transmissions in a localized region is small in order to limit interference in the wireless network and not
render the channel unusable (Gupta and Kumar 2000). So the BFsim approach of scheduling a reception
event at every station leads to unnecessary events with negligible increase in the fidelity of the simulation.

'We use ’stations’ and ’nodes’ interchangeably to denote the simulated wireless agents.

Ganti, Onunkwo, Schroeppel, Scoggin, and Van Leeuwen

3 ALGORITHM DESCRIPTION

One simple optimization to wireless network simulations is to omit scheduling of reception events to agents
beyond a fixed factor of the transmission range. The truncation of reception events, also called “clipping”,
forms the first step in the KMsim algorithm.

The first challenge in wireless simulations is the explosion of reception events due to the broadcast
nature of the wireless medium. A station transmission leads to a reception in every station in the wireless
network. Since the received signal power generally decreases with the square of distance (and even higher
exponent in the presence of shadowing), there exists a range beyond which the packet reception event
can be ignored as long as there are not too many of them. Our DES simulation studies have shown that
there is no loss in simulation fidelity if one adopts a range-based model for transmissions. The concept is
extensible to general power-based models by mapping distance-measures to SINR-based measures.

3.1 Clipping

So in our algorithm, a transmission event at space-time (p,) only causes reception events at stations that
are within distance r from p at time ¢, where r is a design parameter. Our simulation studies (see Section 6)
suggest that r = 4rry is sufficient for a maximum transmission range of rrx. Note that this approximation
is valid as long as the node density and more precisely the density of simultaneous transmissions does not
grow without bound as the network size increases. A key assumption that we make is that the node density
is invariant with the network size. As we stated previously, prior research has shown that this must be the
case in order for the total network throughput to increase with the network size. In order to see why our
assumption breaks down when the node (transmission) density scales with the network size, consider a unit
disc with N nodes. Any radius < 1 has a node population that scales with O(r?) while the interference
per user scales as O(r~2) and the total interference contribution from nodes beyond any r is significant.
So in this case a clipping approach would drastically underestimate the interference.

The KMsim algorithm utilizes two key tree structures: (a) a k-d tree for spatial indexing and fast retrieval
of neighbor lists during communication events and (b) a modified min-heap (MMH) that tracks motion
events that do not require an immediate update of the k-d tree. We considered another spatial indexing
tree structure, the R*-tree variant (Kriegel, Brinkhoff, and Schneider 1993), for retrieval of neighbor lists,
but found that the k-d tree open source implementation called the Spatial C++ Library (Bougerel 2017)
had better performance than the open source implementations of R*-tree that we tested.

A broad desciption of the algorithm is as follows. At initialization of a wireless simulation, all stations
positions are mapped into the k-d tree. The MMH is then used to track a crossing time, fcross, for each
station, defined as the time at which the station crosses an imaginary sphere of radius rp centered at the
k-d tree location when traveling at its current velocity. Hence for all simulation times less than the fcross
for a station, we know its location must be within that sphere and when making a query for neighbors
within a transmission range, we can query the k-d tree with range equal to rp +r. When a node crosses
its range-sphere its position is updated in the k-d tree. The detailed setup, initialization, and running of
our algorithm is described in the following subsections.

3.2 Setup

We have a PDES of a wireless network with multiple Logical Processes (LPs). Each LP is in charge of
events originating from a fixed geographical region in the simulation world; this fixed region can contain
zero or more wireless stations. A transmission within an LP region can only reach a fixed number of
neighboring LP regions and each LP can inform the relevant neighboring LPs. Each simulated wireless
agent maintains the following states:

e geographical position stored in the k-d tree py, which serves as the key in the k-d tree;
e last updated waypoint position p;, which is not necessarily the same as py;

Ganti, Onunkwo, Schroeppel, Scoggin, and Van Leeuwen

last update-time #; corresponding to py;
current velocity v;, defined as the vector interpolating the current waypoint position and the next
waypoint position;

e next time to update waypoint position & velocity, #,,. This is the time at which a station’s position
and velocity will be updated;

e crossing-time, fcross. This value is the time at which this station crosses a sphere of radius rp
centered at the k-d tree position (py) as long as it is less than #,. If not, then is set to infinity.
The crossing-time is also the key in the modified minimum heap (MMH). The MMH has two
data structures: (i) a min-heap and (ii) a hash table. Stations whose current fcross < oo are in the
min-heap and the rest are in the hash table. When a station’s #cross changes to infinity it gets moved
from the min-heap to the hash table and when f¢cross changes from infinity to a finite value, the
station gets moved from the hash table back into the min-heap; and

e its position in the min-heap (i,,) for efficient deletion: this last piece is what distinguishes our
modified min-heap from a standard min-heap.

Note that the position and velocity parameters are vectors.

3.3 Initialization

The simulation is initialized for each LP as follows: for each station inside an LP, define an initial set of
values: py = p; = po, t; =0, and v; = vo. The motion events that update stations’ velocities are scheduled
which populates {z,}, some of which could be infinity. The initial positions of stations are used to build
a k-d tree. The initial velocity allows for the computation of the initial zcross, Which is used to build the
MMH in time O(N). Stations with 7cross < oo are used to build a minimum heap. Stations with f¢ross = o0
are stored in a hash-table with their station-id as the key. Note that these include both stationary stations
as well as stations whose velocity will be updated before they can cross the range-sphere at the current
velocity. The packet transmission events for relevant stations are scheduled.

3.4 Running the Simulation

There are essentially four classes of events during the simulation run: (i) transmission events (Tx) and (ii)
motion events (Mv), (iii) station additions (Add) and (iv) station deletions (Del).

i) Tx Event: Consider the execution of a transmission event at space-time of (p,t), i.e., is the
current simulation time. The source LP schedules reception events on itself and neighboring LPs
after a delay based on the packet size and bandwidth, that are within the transmit range, r7x. The
execution of a reception event at an LP consists of several steps. We first update the current position
of all the stations in the LP that have crossed their range-spheres. This is done as follows. We
observe the MMH repeatedly examining the minimum key #,, := min{zcross }. If #,,, > t we stop, else
the corresponding station, which is at the root of the MMH, has crossed the range-sphere. We then
update the fcross Of the root node and bubble-down. This is more efficient than a delete followed
by an insert in a min-heap. In the case where the updated fcross = oo we delete this station from
the min-heap and insert it in the hash table; this can be done efficiently using the station’s tracked
position in the min-heap (i,,). For each station whose old fcross Was less than ¢ we update the k-d
tree geographical position parameter: py — p;+ (t —#;)v;. We then poll the k-d tree for stations
within range (r+rp) from p. This list will include every station that is within » from p: If a station
at time ¢ is within distance r from p and its position at ¢ is within distance rp from the position in
the k-d tree, then by the triangle inequality its position in the k-d tree is within distance r+ rp from
p- We do not update the k-d tree geographical position parameter, pg, of the stations returned by
the k-d tree. We schedule a reception if their positions at time ¢ would put them within » of point p.

iif)

iv)

Ganti, Onunkwo, Schroeppel, Scoggin, and Van Leeuwen

Mv Event: Consider the execution of a move event at time ¢ on a station. Executing this event
might lead to an update of the station’s position in the MMH. But contrary to intuition, it might not
lead to any change in the k-d tree. The following station parameters: py,t;,v;,fcross Will get updated
in order: p; — p;+ (t —t;)v;, t; = t, and v; from the mobility model. There are two sub-cases. The
first involves a move event of a station within the LP (region associated with the LP). That is, the
new velocity of the station is such that it will remain inside the LP until its next move event. In
this case there is no change to its position inside the k-d tree. Consider the MMH: if fcross <,
implying that the station has already crossed the range-sphere then there is nothing to be done.
If the old fcross is greater than ¢ then the new velocity could potentially lower its fcross. As an
example consider a previously stationary station that is now moving. The new fcross 1S obtained
using the updated p; and v; and the equation:

|(p1 — pi) + Vil (tcross —)| = rp (D

In this equation we have used a conservative calculation for fcross, since the true fcrogss is at least this
large. For better accuracy one can solve a quadratic expression derived from vector arithmetic (see
Figure 1). Next, the position of this station within the min-heap is appropriately moved up. Note
that this is not necessarily a root node of the min-heap and hence its position #,, within the min-heap
is utilized to perform this operation in O(logN). Also, note that the min-heap only consists of
mobile nodes, since stationary nodes are stored in the hash table. If the number of mobile nodes
in the network is a small fraction of the total population N then this runtime could be constant in
practice.

t(new)

cross

Figure 1: Computing the new crossing time, 7orcs

, involves solving a quadratic from the above geometry.

In the second case, where a station’s move event (waypoint change) will result in it exiting the
current LP before its next move event, the LP schedules a deletion of the station on itself and an
addition on the neighboring LP at the time of the crossover. The #cross update is similar to the case
where the station remains within the LP with one exception: if it turns out that the station will
cross the current LP before it crosses its range-sphere, then we set fcross to infinity.

Add Event: The LP updates the station’s parameters using: p; — p;+ (t —t;)v;, t; =t, pr = pi,
fcross =t +rp/|vi|. It then inserts the station in its k-d tree and MMH.

Del Event: The LP deletes the station from the k-d tree and MMH. In the latter it utilizes the
station’s i, if fcross 1S finite.

4 COMPLEXITY ANALYSIS OF KMsim AND BFsim

In this section, we analyze the computational complexity of executing transmission and move events, where
move events refer to events that change a node’s waypoint. The reception events are clearly O(1) in KMsim
as only the single receiving station is served by the simulator.

In the initialization phase, each LP builds a k-d tree and a MMH. For algorithmic efficiency, the k-d tree

needs to be close to a balanced tree. A fully balanced k-d tree with N nodes can be built in time O(Nlog>N)

Ganti, Onunkwo, Schroeppel, Scoggin, and Van Leeuwen

using repeated sort (Wald and Havran 2006, Ooi 1987). Faster constructions in time O(NlogN) exist that
give nearly balanced trees that might be sufficient in practice. The MMH is a combination of a min-heap
and a hash table. Each of these can be constructed in time O(N) (Cormen 2009, Schoenmakers 1993).

4.1 Cost of a Transmission Event

Consider a transmission event at some point in time. Due to the network size-invariant station density
assumption (Section 3.1), we presume that the total number of stations within range r + rp is bounded by
some integer k. The event has two parts — an update of the MMH and an update of the k-d tree. We will
show that each of these can be performed in time k X O(logN), where N is the total number of simulated
agents.

4.1.1 Update of MMH

For each of the k stations, we incur at most the cost of a min-heap update. The per-station computation
cost is O(logN). If the updated #¢cross is a finite value, then it percolates down the min-heap from the root
to its correct position in O(logN) (heap bubble-down operation). If the updated value of fcrogs is infinity,
then it gets deleted from the root of the min-heap which takes time O(log/N) and added to the hash table
in O(1).

4.1.2 Update of k-d tree

We use the old k-d tree position key (py) to delete the stations within a k-d tree. We reinsert these stations
with the updated position py. Since the k-d tree is balanced, then this has a per-station cost of O(logN).

4.2 Cost of Move, Deletion, and Add Events

A station move-event could potentially result in the lowering of #cross and lead to an update of the min-heap.
The station position within the min-heap, i,,, is used to compare its key with its parent and percolate the
station up the tree (heap bubble-up operation). The cost of this operation is O(logN).

For a deletion event, if the station is in the min-heap, then its position i, is used to swap with the
rightmost leaf of the min-heap, which is subsequently deleted. The station at i,, is then appropriately moved
up or down the min-heap to its correct position using its key zcross. The cost of this operation is O(logN).
The deletion to a balanced k-d tree is a O(logN) operation.

Adding a station to MMH of new LP is an O(logN) operation: it is the standard heap insertion of
adding to the heap bottom and bubbling up. The addition to a balanced k-d tree is an O(logN) operation.

5 SELECTION OF rp AND r

The clipping radius for transmission (r) is the distance beyond which we ignore the interference caused
from a transmission. It depends on the transmit power, receiver gain and channel conditions. In order to
attain high accuracy in simulations, one needs this r to be a multiple of the maximum per-antenna range
for a successful simulation of the underlying protocol. The concept of clipping range also assumes that
the agents beyond r have a total interference that is negligible. This needs to be verified by analyzing the
underlying network applications. The simulation experiments that we have ran, described in Section 6,
suggest that r = 4rry is sufficient.

The returned list size from an MMH query is indirectly proportional to rp, while the returned list size
from the k-d tree is directly proportional to rp. This means that rp needs to balance the computational cost
of querying these two data structures. We want the two lists to be small (constant size) compared to the
number of simulated agents in a LP. We have found that setting rp to be a small multiple of r yields good
results. In our simulations we found that, rp = r outperformed the rp = 2r and rp = 4r configurations (see
Figure 2).

Ganti, Onunkwo, Schroeppel, Scoggin, and Van Leeuwen

6 SIMULATION RESULTS

We discuss multiple simulations that show the superior performance of our approach (KMsim) over the
standard approach (BFsim). Two of the most commonly used network discrete-event simulators, ns-3
and OPNET, are also used in our simulation result studies. ns-3 simulations demonstrate that KMsim is
orders of magnitude faster than BFsim at large network sizes (Figure 3a). We compute the relative error
of the end-to-end delay profile between KMsim and BFsim, which shows that KMsim maintains high
simulation fidelity with respect to BFsim (Table 1). Simulations are performed on an Intel(R) Xeon(R)
CPU E5-2697 @ 2.70 GHz processor and are single-core DES.

6.1 Comparing Runtime of KMsim and BFsim

In this setup, we increase the number of agents in the simulation from 1,000 stations to 100,000 stations.
Each agent uses the exponential distribution for time of occurrence of mobility events and communication
events. The mean time for communication events per station is set at 1 tick. Two sets of mean time for
mobility events (waypoint changes) are studied — (a) mean time for waypoint change is 10 x mean time
for communication events and (b) mean time for waypoint change is 100 X mean time for communication
events. In both cases, waypoint positions change slower than the time for a data communication. We use
a random walk for the actual waypoints and stop simulation after 1,000 ticks in time. The total wall clock
time is proportional to the number of simulation ticks. This means that if one has to estimate the wall
clock time taken to simulate a million ticks of the same number of nodes, then one can simply multiply
the runtime for 1,000 ticks by 1,000. The simulation world is 3-D with dimensions of 10,000 x 10,000 x
100. For the KMsim comparison plots, we run three sets of experiments under the network size-invariant
density specification: (i) rp = 4r (ii) rp = 2r, and (iii) rp = r. The runtime comparison of BFsim and
KMsim in the two scenarios is shown in Figure 2.

1000000 1000000
100000 S 100000 —
10000

10000 S

1000 1000

Runtime (s)
Runtime (s)

100

"/’ t’/’/
10 ——Traditional 10
Custom, Const Density, range-sphere radius = 4R

—e—Custom, Const Density, range-sphere radius = 2R

——Traditional
Custom, Const Density, range-sphere radius = 4R
—=—Custom, Const Density, range-sphere radius = 2R

Custom, Const Density, range-sphere radius = R Custom, Const Density, range-sphere radius = R

1,000 10,000 100,000 1,000 10,000 100,000
Node count Node count

(a) 10 communication events per waypoint change. (b) 100 communication events per waypoint change.

Figure 2: Comparing traditional approaches to our custom approach for simulating mobility and commu-
nication events.

As can be seen, the KMsim approach significantly outperforms BFsim approach for all node counts
shown. The superiority is even better as the number of communication events per mobility event increases.
It is important to reiterate that lower mobility event rate does not imply lack of mobility but rather the
frequency of changing direction and speed of movements. Realistic simulations of wireless networks are
expected to tend towards higher communication event per mobility. From Fig 2b, we see that at 100,000

Ganti, Onunkwo, Schroeppel, Scoggin, and Van Leeuwen

nodes, the BFsim takes 340,440 seconds (or 3 days 22 hrs 34 min) to complete the same simulation that
only runs in wall clock time of 2358 seconds (or 39 min 18 seconds) for the KMsim with rp = r. Note
that BFsim’s performance is essentially identical in these setups. However, average density of the network
has a significant effect on KMsim as its efficiency is best achieved when the average number of agents
within a neighborhood is constant, i.e., independent of the total count of agents in the simulation world.
We did not perform a parameter sweep for optimal choices of the range-sphere, but the plots in Figure 2
already show superior performance for the choices of rp =r, rp =2r, and rp = 4r.

6.2 Comparing Performance on a Typical Network Simulator, ns-3

In this setup, ns-3 was configured to use the range propagation loss model for wireless communications.
The network was a static grid meaning that all agents were stationary. The reason for choosing a static grid
was for simpler verification of simulation correctness and to reduce focus on runtime variations between
runs. Every agent has an exponentially distributed communication time with a mean of 10 minutes and a
period of 1 day was simulated. Every agent broadcasts a status packet that is received by it neighbors within
the transmission range and which leads to no further communication. The runtime results are averaged
from 10 independent monte carlo runs. The simulations were performed with and without full-fledged
reception event logic. In the simulations, the k-d tree result consists of half of the idea in KMsim; the
other half of KMsim is the MMH which was not implemented since the agents are stationary. In both the
traditional approach and the k-d tree approach, clipping is used to eliminate scheduling of reception events
where the signal-to-interference-plus-noise ratio is insignificant. The comparison of the runtime and cycle
counts per event is shown in Figure 3. As seen from Figure 3b, we have an exponential speedup in the

Send() Event

3.50E+06

3.00E+06

2.50E+06

e

300
2.00E+06

Run Time [s]
b
&
Cycles/Event

200 1.50E+06

150

_— 1.00E+06

¥ = 8.64E-04xIn(x) +3.97E-03x - 0.235

100

5.00E+05

50 == Dl

o 0.00E+00
100 5100 10100 15100 20100 25100 100 400 1600 6400 25600

Nodes Nodes

——KDTree Brute Force
——KDTree Brute Force

(a) Runtime comparison. (b) Cycles per event comparison.

Figure 3: ns-3 simulations comparing traditional approach to k-d tree approach for scheduling of reception
events (reception events are no-op operations).

cycles spent per transmission event. In Figure 3a, this speedup manifests as a runtime of O(NlogN) as
opposed to O(N?), which translates to a speedup of 3.5X at a grid size of 125 x 125 nodes. For a validation
of how this speedup is achieved, we use Valgrind’s KCachegrind module to get accurate cycle counts for
the functional decomposition of the two implementations (see Figure 4). The profile result show that the
GetNodesInrange () function is predominantly expensive when comparing the traditional approach
against the k-d tree approach (i.e., O(N?) versus O(NlogN)), which explains the curve-fits in Fig 3. In
the previous results, our emphasis was on the gain in performance strictly based on transmission events,

Ganti, Onunkwo, Schroeppel, Scoggin, and Van Leeuwen

KDTree
1E+14

1E+13

1E+12

1E+11

Estimated Cycles Inclusive

1E+10

LE+09

LE+08
=

00
oot

N
19
ol

0052
009

Nodes

mRun ®=WifizSend() ® GetNodesinrange() ™ Operators+()

(a) k-d tree approach.

00v9

0000T

SZ9ST

0087z

1E+14

1E+13

LE+12

LE+11

Estimated Cycles Inclusive

LE+10

LE+09

1E+08
e

00

Brute Force

ooy
STzt
00sT
009€
00t9
0000T
S798T
00572

Nodes

®Run ®WifizSend() ® GetNodesinrange() Operator!=()

(b) traditional approach.

Figure 4: Cycles breakdown view of basic operations in the ns-3 simulation.

where clipping has been employed and reception event logic are replaced by no-op operations. To give a
better treatment of the true performance gain due to clipping, we use the traditional approach to DES and
show the speedup gained from clipping. As seen from Fig 5, clipping provides a high simulation speedup

1.00E+06

1.00E+05

1.00E+04

1.00E+03

Run Time [s]

1.00E+02

1.00E+01

1.00E+00
100

——Clipping ——No Clipping

800
Nodes

10000

1000

220246

R2=0.9924

SpeedUp

1600

Speedup - - -Fit (Speedup)

Figure 5: ns-3 wireless network simulation speedup due to clipping.

reaching about 2,000X at 50 x 50 nodes. Of course, this speedup will be meaningless if the simulation
fidelity is lost; however, as we will demonstrate in Section 6.3, the fidelity of the simulations tend to stay
true at moderate clipping range when compared to the default no clipping.

6.3 Simulation Fidelity after Clipping

Up to this point, we have shown the superior runtime performance that the techniques of KMsim achieves
when compared to traditional (aka BFsim) methods. However, it is important to investigate the potential
effects on the simulation fidelity when using the KMsim approach. In this subsection, we analyze the
effect of clipping the transmissions in a wireless setting on the fidelity of a wireless network simulation.

Ganti, Onunkwo, Schroeppel, Scoggin, and Van Leeuwen

We have a wireless grid topology identical to what was described in Section 6.2 but we use OPNET as the
simulator, where the transmission range is set to 400 meters and the grid is only of size 20 x 20. The nodes
are stationary and use Dynamic Source Routing (Johnson 1994, Johnson and Maltz 1996). The metric
being measured is the end-to-end delay between packets originating from the top-left corner (source) to
the bottom-right corner (destination) of the grid. The source node transmits every ten seconds. There
is additional background traffic generated by the rest of the nodes to random destinations (not including
the two nodes of interest). This background traffic has an inter-packet generation time that is uniformly
distributed between [9,10] seconds. The packet size is constant and slightly above 200 bits and the wireless
data rate is 1 Mbits/s. We explored various clipping ranges ranging from 500 m to 9,000 m. The simulation
runtime ranged from approximately five minutes (500 m) to about two hours (9,000 m).

We periodically collect end-to-end delay time. We compare the delay profile results with and without
clipping, noting again that the default behavior of most wireless network simulators is no clipping. The
metric used for this comparison is the cumulative distribution function (CDF) of the end-to-end delay.
Figure 6 shows the delay profile distribution for the baseline (no clipping) and various clipping regimes.

End-to-End Delay with Various Clipping Range Values
12

10

°
3

Cumulative Distribution (CDF)
°
@

o
=

—500m clip
—1000m clip
2000m clip
——6000m clip | |
9000m clip

no dlip

0.2

0.0

0.00 0.05 0.10 0.15

End-to-End Delay (sec)

0.20 0.25

Figure 6: Effect of clipping on wireless network simulation fidelity.

We also computed the relative error (RE) defined as:

Ly (& —9:)?
Yixi/n

between a clipped simulation ({y;}) and the baseline ({x;}) for various clippings where the ‘hat’ (") denotes
the sorted vector of size, n. The relative error is expected to monotonically decrease on average with respect
to the clipping range. In these simulations, we used 10 independent samples to generate the average values.
Notice that even at 500 m, the RE is already below 25%. Table 1 compares the end-to-end delay at various
clipping ranges, which is a subset of the clipping ranges we examined. Table 1 also shows agreeable range

(@)

Clipping || Baseline(co) 500 m 1,000 m 2,000 m
Mean 1.45E-01' s | 1.32E-01 s | 1.35E-01 s | 1.43E-0O1 s
Stdev 5.86E-02 s | 2.91E-02 s | 4.43E-02 s | 3.05E-02 s
Rel.Err. - 2.44E-01 1.80E-01 2.35E-01

Table 1: Comparison of end-to-end delay at various clipping ranges with baseline (no clipping)

of values for the end-to-end delay profile and the relative errors are negligible as comparison between

Ganti, Onunkwo, Schroeppel, Scoggin, and Van Leeuwen

different set of pseudo-random seeds within the “no clipping” can yield similar variations. For this study,
OPNET was used due to the ease of generating the delay profile CDFs; however, in Section 6.2 we used
ns-3 because of our familiarity with its source code.

7 CONCLUSION AND FUTURE WORK

We have described a new approach for rendering previously impractical wireless network simulations
practical. The runtime complexity of current approaches for simulating large wireless networks limits the
size of current studies. Using our approach, we have demonstrated exponential speedup of communication
events. This translates to a performance improvement that grows with the count of simulated agents,
which is two orders of magnitude improvement at 100,000 agent count. In general, our approach has a
O(NlogN) runtime as opposed to O(N?) runtime of traditional approaches. The key data structures used
in our approach are: (i) a min-heap used to identify when station positions need to be updated and (ii) a
k-d tree used to compute the neighbors of a data transmitting agent.

We are currently considering alternatives to these data structures in order to further lower the runtime
cost. The alternative data structures are a Weighted Radix Priority Queue (WRPQ) for the min-heap and a
Cell-Array for the k-d tree. The WRPQ stores the range-sphere crossing times in a collection of coarsely
sorted buckets that we expect to have an amortized processing cost of O(1) per communication and move
event. The Cell-Array divides the entire simulation region under an LP into cells and stores the stations
within a cell in an array of linked lists. The area of a cell is close to the effective area of a transmission.
Hence transmission events within a cell affect only neighboring cells and if the station density is constant
then the amortized cost of computing the list of affected stations will be O(1). We hope to thoroughly
analyze this approach in the future.

This work focuses on the simulation of wireless networks and we predict that our approach has immediate
applicability to other simulations where agents are mobile and frequent interactions exist between agents
on the basis of neighborhood as seen in disease propagation and other models.

Many wireless networks have humans as the underlying agents. Various research studies on human
motion have demonstrated that human motion does not fit the random walk that is typically used in
simulations. Human motion is fairly predictable, has strong correlations, and is often distributed in clusters
(as opposed to uniformly), where these clusters can be work and home locations. This information can
be leveraged by PDES to partition the simulation region in order to reduce inter-LP communication
thereby improving simulation runtime. Thus, research in graph-partitioning algorithms can inform good
load-balancing of mobile wireless networks PDES.

REFERENCES

Sylvain Bougerel 2017. “Spatial C++ Library: Generic Multi-Dimensional Containers and Spatial Opera-
tions”. Accessed: 2017-04-02, URL: http://spatial.sourceforge.net/.

Cormen, T. H. 2009. Introduction to algorithms. MIT press.

Gupta, P, and P. R. Kumar. 2000. “The capacity of wireless networks”. IEEE Transactions on information
theory 46 (2): 388—404.

Johnson, D. B. 1994. “Routing in Ad Hoc Networks of Mobile Hosts”. In IEEE Workshop on Mobile
Computing Systems and Applications, 158-163. IEEE Computer Society.

Johnson, D. B., and D. A. Maltz. 1996. Mobile Computing. Kluwer Academic Publishers.

Kriegel, H.-P., T. Brinkhoff, and R. Schneider. 1993. “Efficient Spatial Query Processing in Geographic
Databse Systems”. IEEE Data Engineering Bulletin (3): 10-15.

Ooi, B. C. 1987. “Spatial kd-tree: A data structure for geographic database”. In Datenbanksysteme in Biiro,
Technik und Wissenschaft, 247-258. Springer.

Schoenmakers, B. 1993. “Inorder traversal of a binary heap and its inversion in optimal time and space”.
In Mathematics of Program Construction, 291-301. Springer.

http://spatial.sourceforge.net/

Ganti, Onunkwo, Schroeppel, Scoggin, and Van Leeuwen

Wald, I., and V. Havran. 2006. “On building fast kd-trees for ray tracing, and on doing that in O(NlogN)”.
In Interactive Ray Tracing 2006, IEEE Symposium on, 61-69. IEEE.

AUTHOR BIOGRAPHIES

ANAND GANTI is a member of technical staff in Advanced Systems at Sandia National Laboratories in
Albuquerque, NM (USA). He works in the areas of algorithms, information systems, and mathematical
modeling. His e-mail address is aganti @sandia.gov.

UZOMA ONUNKWO is a member of technical staff in Advanced Systems at Sandia National Labora-
tories in Albuquerque, NM (USA). He has years of experience in network simulations, high performance
computing, and information processing systems. He was a co-author on a conference paper for the 2013
IEEE International Conference on Computing, Networking, and Communications, which won an IEEE
Best Paper award. His email address is uonunkw @sandia.gov.

RICHARD SCHROEPPEL is an expert in Cybersecurity R&D. His email address is rschroe @sandia.gov.

MICHAEL SCOGGIN is a computer engineer with expertise in scalable architectures and algorithms.
His email address is mpscogg@sandia.gov.

BRIAN VAN LEEUWEN is an expert in Cybersecurity R&D. He has led many high fidelity simu-
lation projects for high consequence systems, with emphasis on cyber security. His email address is
bpvanle @sandia.gov.

mailto://aganti@sandia.gov
mailto://uonunkw@sandia.gov
mailto://rschroe@sandia.gov
mailto://mpscogg@sandia.gov
mailto://bpvanle@sandia.gov

	INTRODUCTION
	PROBLEM STATEMENT
	ALGORITHM DESCRIPTION
	Clipping
	Setup
	Initialization
	Running the Simulation

	COMPLEXITY ANALYSIS OF KMsim AND BFsim
	Cost of a Transmission Event
	 Update of MMH
	 Update of k-d tree

	Cost of Move, Deletion, and Add Events

	SELECTION OF rD AND r
	SIMULATION RESULTS
	Comparing Runtime of KMsim and BFsim
	Comparing Performance on a Typical Network Simulator, ns-3
	Simulation Fidelity after Clipping

	CONCLUSION AND FUTURE WORK

