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Multi-fluid plasma modeling

 Multi-fluid plasma models simulate each species independently and couple the 
species together through collisional and electromagnetic operators.

 Primarily designed for systems with fast time scales where electron inertial 
effects and charge separation are resolved.

 Useful for modeling interactions between ion/neutral species as the closures 
do not rely on complex equations of state.

 Main drawback: model is computational expensive due to the necessity of resolving 
fast plasma scales associated with electron dynamics and Maxwell’s equations.

 Research objective: Explore the behavior of strongly-coupled, multi-scale systems, 
specifically when stepping over fast time scales using fully implicit and mixed 
implicit-explicit (IMEX) time integration. Topics include:

 How to split the multi-fluid plasma model for IMEX integration?

 What happens to stability/accuracy when stepping over the faster time scales? 

 Is an accurate solution expected for slow dynamics when stepping over fast 
dynamics?

 How do we design preconditioning schemes to solve strongly-coupled fully-
implicit and IMEX systems?



Multi-fluid plasma scales

 Scaling is strongly dependent on a species �’s mass, density, and temperature.

 Can be broken into frequency scales, velocity scales, and diffusion scales:
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The compressible multi-fluid plasma model is a 
strongly-coupled, non-linear system of equations 
representing many stiff scales. How do we solve this?

Each operator is associated with one or more 
plasma scales. Here are the dominant explicit 
stability limits:



Explicit time integration

 Explicit integration is a classic method for evaluating time derivatives.

 For Runga-Kutta methods, explicit time integration can be written in the form:

 Pros:

 Computationally efficient to evaluate -> No global solve required

 Easy to implement and debug

 Cons:

 Stability depends on resolving frequency, velocity, and diffusive scales -> Long 
runtimes for stiff models.
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Implicit time integration

 Implicit time integration attempts to solve for a future state as a whole using an 
optimization process.

 Singly diagonally implicit time integrators (SDIRK) can be written in the form:

 Pros:

 Can step over frequency, velocity, and diffusive time scales, but this sacrifices 
accuracy for the fast under-resolved dynamics

 Cons:

 Requires a global solve across a parallel system

 Multi-scale systems (e.g. plasmas) require complex preconditioning schemes
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IMEX integration

 Splitting the model up based on stiffness allows us to choose what goes into the 
implicit solve:

 Explicit for slow, non-stiff terms

 Implicit for fast, stiff terms

 Objective: Combine the advantages of implicit and explicit solvers

 Take advantage of slow implicit solver to overstep fast scales, and fast explicit 
solver to resolve slow scales.
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Example 3-stage IMEX algorithm
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 For most applications, multi-fluid plasma model’s can be broken into fast and slow
components based on the associated time scales:

 The stiffness of these terms are problem dependent, but their application in IMEX 
is easy to modify

Splitting multi-fluid plasma model
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Compatible discretization for EM

 For this research, a compatible finite element discretization is used to enforce the 
divergence constraints for the electric and magnetic fields.

 Fluids are represented by an HGrad (node) basis � ∈ ��.

 The electric field is represented by an HCurl (edge) vector basis � ∈ ��×.

 The magnetic field is represented by an HDiv (face) vector basis � ∈ ��⋅.

 Compatibility is defined by the discrete preservation of the De Rham Complex:

 For Faraday’s law, we choose a basis for the electric field such that its curl is fully 
represented by the basis used by the magnetic field.

 Since the curl of the electric field is ‘globally continuous’ w.r.t. a divergence 
operator, the divergence of that curl is zero over the domain:

 Result: The curl operator does not add divergence errors to the magnetic field
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 Goal: Solve plasma-coupled Maxwell’s equations and satisfy a divergence constraint:

 In the strong, non-discretized form:

 In the weak form: Choose a basis that supports the divergence constraint as HCurl
does not support the divergence operation:

 Assumes that continuity equation is weakly satisfied:

Satisfying Gauss’ laws in plasmas
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Adaptable block preconditioning

 Solving strongly-coupled, multi-scale systems of equations requires advanced 
preconditioning techniques.

 Block preconditioning is a method of identifying and isolating specific scales in a 
system by grouping the terms together.

 Many options are available, for instance, when overstepping electron time scales 
we may block the system into fast, slow, and coupling terms:

 Blocking the ion dynamics (potentially including neutral fluids) into a ‘slow’ block 
separates the scales from the ‘fast’ block preconditioner*.

*E.G. Phillips, J.N. Shadid, E.C. Cyr, H.C. Elman, and R.P. Pawlowski, Block Preconditioners for Stable Mixed Nodal and Edge FE Representations of Incompressible Resistive MHD, SISC, Vol. 38 (6), 2016.
*E.C. Cyr, J.N. Shadid, R.S. Tuminaro, R.P. Pawlowski, and L. Chacon, A New Approximate Block Factorization Preconditioner for Two Dimensional Incompressible (Reduced) Resistive MHD, SIAM Journal on Scientific Computing, 35:B701-B730, 2013.
*E. G. Phillips, J. N. Shadid, and E. C. Cyr, Scalable Preconditioners for Structure Preserving DIscretizations of Maxwell Equations in First Order Form, In preparation, 2017



Linearized two-fluid wave tests

 Linearizing the two-fluid plasma model results in a set of linear waves describing 
the dynamics of perturbations in a background equilibrium plasma. 

 Electrostatic waves: Longitudinal waves usually associated with acoustic modes in 
plasmas

 Electromagnetic waves: Transverse electromagnetic wave that drives current in 
plasma thereby slowing the EM wave’s speed

 Notes for test cases:

 Mass ratio of �� = 1836 ��, temperature ratio �� = 10 ��

 Convergence is tested against a constant CFL condition Δ� ∝ Δ�

 Tests compare SDIRK22 (fully implicit) and SSP3-332 (IMEX) time integrators

Two-fluid electrostatic Two-fluid EM circularly polarized
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Electrostatic wave: LIP

 There are two electrostatic waves:

 Fast longitudinal electron waves (LEP)

 Slow longitudinal ion waves (LIP)

 While LEP can be handled explicitly or 
implicitly at around the same runtime, LIP is 
not efficiently simulated by explicit solvers.

 Convergence is equivalent for IMEX and fully 
implicit when overstepping fast scales.
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Electromagnetic wave: RCP

 Right handed circularly polarized (RCP) 
waves have two branches:

 Upper branch: Fast waves, good for 
explicit schemes

 Lower branch: Slow waves, good for 
implicit and IMEX schemes

 Both fully implicit and IMEX converge 
properly when overstepping plasma scales.
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Electromagnetic wave: LCP

 Left handed circularly polarized (LCP) 
waves are similar to RCP, but the lower 
branch represents an extremely slow wave 
making it more difficult to model.

 Results show that the ion dynamics 
converge as expected even though the 
electron and EM scales are under-resolved 
by factors of >1000.
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Mixing fast and slow waves

 Both the fully implicit and IMEX results 
use an L-stable time integrator to 
ensure that fast, under-resolved waves 
are damped to ensure stability.

 Example: Mixing O-wave and LEP wave

Convergence for slow (LEP) modes

Convergence for fast (TEM) modes

Under-resolved behavior will accrue large phase 
and amplitude distortion.



 Objective: Run a full multi-fluid solver over MHD plasma scales. 

 MHD approximates the multi-fluid plasma model by analytically removing electron 
and electromagnetic time scales.

 Two main assumptions used in deriving MHD:

 Process converts frequency scales into velocity scales and diffusion scales:

Slow time scales
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Resistive Alfven wave problem

 Solution is derived from resistive/viscous 
MHD which ignores Hall effects: 

 Hall parameter H =
���
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 Reducing Hall effects in magnetized 
multi-fluid model is tricky - requires 
large collision frequency

 Problem used for verifying resistive, Lorentz 
force, and viscous operators: 

 Impulse shear due to a moving wall 
drives a Hartmann layer

 Hartmann layer shear excites Alfven 
wave traveling along magnetic field

 Alfven wave front diffuses due to 
momentum and magnetic diffusivity

 Profile depends on the effective 
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Overstepping resistive plasmas

 Convergence tests show expected 
convergence even when massively 
overstepping non-MHD plasma scales

 Roll-off at low resolutions due to under-
resolving Hartmann layer

 Large Lundquist number implies thin 
Hartmann layer

Overstepping fast time scales is both 
stable and accurate. The inclusion of a 
resistive operator adds dissipation to 
the electron dynamics on top of the L-
stable time integrator.
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Ideal two-fluid vortex

 Extension of the ideal MHD vortex (Balsara 2004) where a current column (Z-pinch) 
is advected diagonally in a plane.

 Problem balances a pressure gradient with a combination of centrifugal and 
magnetic forces:

 Note: No damping of fast scales through resistive or viscous operators.
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Overstepping dispersive plasmas

 Solution is independent of electron mass, 
but requires a large plasma frequency to 
avoid a growing displacement current.

 Results show convergence for multiple mass 
ratios for both IMEX and fully implicit, even 
when stepping over fast plasma scales.

L-stable time integrator keeps multi-
fluid model stable and accurate, even 
when there are no dissipation terms in 
the model.
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Summary

 Discussed fully implicit and IMEX time integration in application to the multi-fluid 
plasma model.

 Discussed the use of compatible bases and block preconditioning as a requirement 
for stepping over fast plasma scales in strongly-coupled, multi-fluid plasma models.

 Showed results for multi-fluid plasma model when resolving two-fluid behaviors 
while stepping over faster, less important physics.

 Showed convergence of slow dynamics to analytic solution for electrostatic and 
electromagnetic linear dispersion tests when overstepping fast scales.

 Showed loss of convergence for fast dynamics while retaining convergence for 
slow dynamics when stepping over fast time scales.

 Showed consistency with MHD asymptotes when stepping over electron scales.

 Showed large overstepping of frequency time scales when including resistive 
and viscous effects in the Alfven wave problem.

 Showed applicability toward multi-dimensional, dispersive plasmas in the ideal 
two-fluid vortex problem.

 Future work will focus on developing more efficient implementations of IMEX and 
preconditioners to tackle more advanced plasma dynamics.



Abstract

Multi-fluid plasma models, where an electron fluid is modeled alongside multiple ion 
and neutral species as well as the full set of Maxwell’s equations, can represent physics 
beyond the scope of classic MHD. The drawback being that these models resolve 
electron dynamics and electromagnetics characterized by the plasma and cyclotron 
frequencies as well as the speed of light, which drastically increase runtimes for 
explicit time integrators. Implicit time integration schemes help alleviate this issue by 
stepping over these stiff time scales at the cost of accuracy. To do so, implicit schemes 
must solve a large system of stiff equations which can require complex preconditioning 
schemes to achieve convergence. For most applications, a fully implicit scheme is 
overkill since ion and neutral dynamics are much slower than electron and 
electromagnetic time scales. Mixed implicit-explicit (IMEX) integration provides a 
mechanism to choose which dynamics to resolve using either a complex and slow 
implicit solve or a simple and fast explicit solve. Removing slow dynamics from the 
implicit solve reduces the condition of the solution method thereby reducing runtimes. 
The use of compatible spatial discretizations, meaning coupling a nodal (HGrad) basis 
for fluid dynamics with a sets of vector bases (HDiv and HCurl) for Maxwell’s equations, 
allows us to safely evolve electromagnetics without violating Gauss’ laws for the 
electric and magnetic fields. The goal of this research is to develop robust methods for 
capturing multi-species plasma physics containing electrons and electromagnetics with 
runtimes more commonly associated with MHD solvers.


