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Multi-fluid plasma modeling

=  Multi-fluid plasma models simulate each species independently and couple the
species together through collisional and electromagnetic operators.

=  Primarily designed for systems with fast time scales where electron inertial
effects and charge separation are resolved.

= Useful for modeling interactions between ion/neutral species as the closures
do not rely on complex equations of state.

= Main drawback: model is computational expensive due to the necessity of resolving
fast plasma scales associated with electron dynamics and Maxwell’s equations.

= Research objective: Explore the behavior of strongly-coupled, multi-scale systems,
specifically when stepping over fast time scales using fully implicit and mixed
implicit-explicit (IMEX) time integration. Topics include:
= How to split the multi-fluid plasma model for IMEX integration?
= What happens to stability/accuracy when stepping over the faster time scales?
= |s an accurate solution expected for slow dynamics when stepping over fast
dynamics?
= How do we design preconditioning schemes to solve strongly-coupled fully-
implicit and IMEX systems?



Multi-fluid plasma scales

= Scaling is strongly dependent on a species a’s mass, density, and temperature.
= Can be broken into frequency scales, velocity scales, and diffusion scales:




Primitive 5-moment model scaling

Each operator is associated with one or more
plasma scales. Here are the dominant explicit
stability limits:
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Explicit time integration

= Explicit integration is a classic method for evaluating time derivatives.
= For Runga-Kutta methods, explicit time integration can be written in the form:

o;u = f(u,t)
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i=0
= Pros:
= Computationally efficient to evaluate -> No global solve required
= Easy to implement and debug
= Cons:

= Stability depends on resolving frequency, velocity, and diffusive scales -> Long
runtimes for stiff models.



Implicit time integration

= |mplicit time integration attempts to solve for a future state as a whole using an
optimization process.

= Singly diagonally implicit time integrators (SDIRK) can be written in the form:

o;u = g(u,t)
Implicit tableau
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=  Pros:

= (Can step over frequency, velocity, and diffusive time scales, but this sacrifices
accuracy for the fast under-resolved dynamics

= Cons:
= Requires a global solve across a parallel system
= Multi-scale systems (e.g. plasmas) require complex preconditioning schemes



IMEX integration

= Splitting the model up based on stiffness allows us to choose what goes into the
implicit solve:

. , Implicit tableau Explicit tableau
= Explicit for slow, non-stiff terms
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= Objective: Combine the advantages of implicit and explicit solvers

= Take advantage of slow implicit solver to overstep fast scales, and fast explicit
solver to resolve slow scales.




Example 3-stage IMEX algorithm

Implicit Solves Explicit Solves




Splitting multi-fluid plasma model

= For most applications, multi-fluid plasma model’s can be broken into fast and slow
components based on the associated time scales:
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= The stiffness of these terms are problem dependent, but their application in IMEX
is easy to modify




Compatible discretization for EM

= For this research, a compatible finite element discretization is used to enforce the
divergence constraints for the electric and magnetic fields.

= Fluids are represented by an HGrad (node) basis p € V/},.

= The electric field is represented by an HCurl (edge) vector basis E € V.

= The magnetic field is represented by an HDiv (face) vector basis B € V..

= Compatibility is defined by the discrete preservation of the De Rham Complex:

Voy EVyxy — VX @y €EVy.— V- @pp. €V,

= For Faraday’s law, we choose a basis for the electric field such that its curl is fully
represented by the basis used by the magnetic field.

= Since the curl of the electric field is ‘globally continuous’ w.r.t. a divergence
operator, the divergence of that curl is zero over the domain:

V-(0,B+VXE)=0,(V-B)+V-VXE=0a,(V- B)+215//€x¢vx—at(v B)

—"0 Result: The curl operator does not add divergence errors to the magnetic field




Satisfying Gauss’ [aws in plasmas

= Goal: Solve plasma-coupled Maxwell’s equations and satisfy a divergence constraint:

= In the strong, non-discretized form:

1 1 1
l7-<6tE+—j—czl7><B> =0tl7-E+—l7-j=6t<\7-E——pC>=O
€o €o €o
= |n the weak form: Choose a basis that supports the divergence constraint as HCurl
does not support the divergence operation:
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= Assumes that continuity equation is weakly satisfied:
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Adaptable block preconditioning

= Solving strongly-coupled, multi-scale systems of equations requires advanced
preconditioning techniques.

= Block preconditioning is a method of identifying and isolating specific scales in a
system by grouping the terms together.

= Many options are available, for instance, when overstepping electron time scales
we may block the system into fast, slow, and coupling terms:
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= Blocking the ion dynamics (potentially including neutral fluids) into a ‘slow’ block
separates the scales from the ‘fast’ block preconditioner*.

*E.G. Phillips, J.N. Shadid, E.C. Cyr, H.C. Elman, and R.P. Pawlowski, Block Preconditioners for Stable Mixed Nodal and Edge FE Representations of Incompressible Resistive MHD, SISC, Vol. 38 (6), 2016.
*E.C. Cyr, J.N. Shadid, R.S. Tuminaro, R.P. Pawlowski, and L. Chacon, A New Approximate Block Factorization Preconditioner for Two Dimensional Incompressible (Reduced) Resistive MHD, SIAM Journal on Scientific Computing, 35:B701-B730, 2013.
*E. G. Phillips, J. N. Shadid, and E. C. Cyr, Scalable Preconditioners for Structure Preserving Dlscretizations of Maxwell Equations in First Order Form, In preparation, 2017




Linearized two-fluid wave tests

= Linearizing the two-fluid plasma model results in a set of linear waves describing
the dynamics of perturbations in a background equilibrium plasma.

= Electrostatic waves: Longitudinal waves usually associated with acoustic modes in
plasmas

= Electromagnetic waves: Transverse electromagnetic wave that drives current in
plasma thereby slowing the EM wave’s speed

Two-fluid electrostatic Two-fluid EM circularly polarized
Pa = Mang(1 + 6, sin(kyx — wt)) u§ = tuf sin(k,x — wt)
Uy = 0q4 %sin(kxx — wt) ug = +ufcos(k,x — wt)
P, = nyTy (1 + y6, sin(k,x — wt)) E, = tE, cos(kyx — wt)
E, = Eycos(k,x — wt) E, = +E,sin(k,x — wt)

= Notes for test cases:
= Mass ratio of m; = 1836 m,, temperature ratio T, = 10 T;
= Convergence is tested against a constant CFL condition At « Ax
= Tests compare SDIRK22 (fully implicit) and SSP3-332 (IMEX) time integrators



Electrostatic wave: LIP

= There are two electrostatic waves:
= Fast longitudinal electron waves (LEP) ,,
= Slow longitudinal ion waves (LIP)
=  While LEP can be handled explicitly or R
implicitly at around the same runtime, LIPis = | .~
not efficiently simulated by explicit solvers.
= Convergence is equivalent for IMEX and fully | i —
implicit when overstepping fast scales. A | e m e
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Electromagnetic wave: RCP

® RCP Test Points

= Right handed circularly polarized (RCP) —
waves have two branches: 0 s

= Upper branch: Fast waves, good for
explicit schemes

= Lower branch: Slow waves, good for
implicit and IMEX schemes

= Both fully implicit and IMEX converge
properly when overstepping plasma scales.
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Electromagnetic wave: LCP

= Left handed circularly polarized (LCP) — o
waves are similar to RCP, but the lower 0 — EET )

branch represents an extremely slow wave
making it more difficult to model.

= Results show that the ion dynamics
converge as expected even though the
electron and EM scales are under-resolved
by factors of >1000.
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Mixing fast and slow waves

= Both the fully implicit and IMEX results Convergence for slow (LEP) modes
use an L-stable time integrator to
ensure that fast, under-resolved waves
are damped to ensure stability.
= Example: Mixing O-wave and LEP wave
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MHD asymptote tests

= Objective: Run a full multi-fluid solver over MHD plasma scales.

= MHD approximates the multi-fluid plasma model by analytically removing electron
and electromagnetic time scales.

= Two main assumptions used in deriving MHD:

= Process converts frequency scales into velocity scales and diffusion scales:



Resistive Alfven wave problem

= Solution is derived from resistive/viscous
MHD which ignores Hall effects:

i, 4
——

= Hall parameter H = 2 = LEpS! o] P
Vei nee
= Reducing Hall effects in magnetized i ut.9 'Bo
multi-fluid model is tricky - requires |
large collision frequency ; 81 --------------------- |
= Problem used for verifying resistive, Lorentz | : e
force, and viscous operators: T L

R. Moreau, Magnetohydrodynamics, 1990

= Impulse shear due to a moving wall
drives a Hartmann layer b1y

U
= Hartmann layer shear excites Alfven Ue =7 (1 + eXp( 2 )) erfe(..)

wave traveling along magnetic field U v,y
= Alfven wave front diffuses due to T2 ((1] e (_ T)) erfe(n-)
momentum and magnetic diffusivity _ (11— Yay
= Profile depends on the effective = VioP 4 S exp( A )3 (;rfC(m)
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Overstepping resistive plasmas

= Convergence tests show expected
convergence even when massively
overstepping non-MHD plasma scales

= Roll-off at low resolutions due to under-
resolving Hartmann layer
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Overstepping fast time scales is both
stable and accurate. The inclusion of a
resistive operator adds dissipation to
the electron dynamics on top of the L-
stable time integrator.




|deal two-fluid vortex

= Extension of the ideal MHD vortex (Balsara 2004) where a current column (Z-pinch)
is advected diagonally in a plane.

= Problem balances a pressure gradient with a combination of centrifugal and
magnetic forces:
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= Note: No damping of fast scales through resistive or viscous operators.




Overstepping dispersive plasmas

Lo Error gl

Solution is independent of electron mass,
but requires a large plasma frequency to
avoid a growing displacement current.

Results show convergence for multiple mass
ratios for both IMEX and fully implicit, even
when stepping over fast plasma scales.
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L-stable time integrator keeps multi-
fluid model stable and accurate, even
when there are no dissipation terms in

the model.




Summary

= Discussed fully implicit and IMEX time integration in application to the multi-fluid
plasma model.

= Discussed the use of compatible bases and block preconditioning as a requirement
for stepping over fast plasma scales in strongly-coupled, multi-fluid plasma models.

= Showed results for multi-fluid plasma model when resolving two-fluid behaviors
while stepping over faster, less important physics.

= Showed convergence of slow dynamics to analytic solution for electrostatic and
electromagnetic linear dispersion tests when overstepping fast scales.

= Showed loss of convergence for fast dynamics while retaining convergence for
slow dynamics when stepping over fast time scales.

= Showed consistency with MHD asymptotes when stepping over electron scales.

= Showed large overstepping of frequency time scales when including resistive
and viscous effects in the Alfven wave problem.

= Showed applicability toward multi-dimensional, dispersive plasmas in the ideal
two-fluid vortex problem.

= Future work will focus on developing more efficient implementations of IMEX and
preconditioners to tackle more advanced plasma dynamics.



Abstract

Multi-fluid plasma models, where an electron fluid is modeled alongside multiple ion
and neutral species as well as the full set of Maxwell’s equations, can represent physics
beyond the scope of classic MHD. The drawback being that these models resolve
electron dynamics and electromagnetics characterized by the plasma and cyclotron
frequencies as well as the speed of light, which drastically increase runtimes for
explicit time integrators. Implicit time integration schemes help alleviate this issue by
stepping over these stiff time scales at the cost of accuracy. To do so, implicit schemes
must solve a large system of stiff equations which can require complex preconditioning
schemes to achieve convergence. For most applications, a fully implicit scheme is
overkill since ion and neutral dynamics are much slower than electron and
electromagnetic time scales. Mixed implicit-explicit (IMEX) integration provides a
mechanism to choose which dynamics to resolve using either a complex and slow
implicit solve or a simple and fast explicit solve. Removing slow dynamics from the
implicit solve reduces the condition of the solution method thereby reducing runtimes.
The use of compatible spatial discretizations, meaning coupling a nodal (HGrad) basis
for fluid dynamics with a sets of vector bases (HDiv and HCurl) for Maxwell’s equations,
allows us to safely evolve electromagnetics without violating Gauss’ laws for the
electric and magnetic fields. The goal of this research is to develop robust methods for
capturing multi-species plasma physics containing electrons and electromagnetics with
runtimes more commonly associated with MHD solvers.



