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Abstract — In this work, a sampling method, known as 

intelligent sampling (IS), is presented to reduce simulation time in 

Quasi Static Time Series (QSTS) analysis on electrics grids with 
distributed PV. The sampling method decomposes a year’s worth 
of input solar and load data into six hour intervals and bins the 

intervals according to irradiance and load metrics. 
Representative samples are chosen from the bins and simulated 
using standard power flow solvers. We show that when using the 

IS method, only a fraction of the total entries in the year need to 
be simulated. An example test circuit is used and the IS method 
achieves a 57% reduction in simulation time while meeting 

acceptable error margins. 

I. INTRODUCTION 

The addition of renewable and distributed generation on the 

electric power system has altered traditional control techniques 

and grid analysis methods. Historically, in distribution feeders, 

power flows from the substation to the various loads along the 

feeder length with the voltage regulators reacting to changes in 

load and self-correcting to maintain normal operating voltages. 

Increasing penetrations of distributed PV can create significant 

power output fluctuations and reverse power flows along 

specific segments of the feeder, causing voltage limit violations 

and additional wear and tear on voltage regulation equipment 

[1]. 

In order to model the variability of distributed PV, high-

resolution quasi-static time-series (QSTS) simulations are 

required to simulate the grid impact at different times of year 

and to determine any interactions between PV and existing 

voltage regulation equipment [2]. To capture the interactions 

and seasonal variations, accurate QSTS simulation should be 

performed at high-resolution (<5 second time-step) and for the 

duration of a year [3].  Certain QSTS metrics such as extreme 

voltages and line losses can be approximated using relatively 

large time steps, but voltage regulators and capacitor switching 

require time-steps on the order of one to a few seconds. These 

types of QSTS simulations are computationally intensive and 

can take days to perform for large distribution system models.  

The computational burden limits the practicality of QSTS for 

parametric analysis [4] or for the hundreds of PV 

interconnection requests that a utility receives. 

There has been limited research into improving the speed of 

QSTS simulations [5].  Due to the unbalanced nonlinear nature 

of the distribution system power flow equations, it can be quite 

challenging to decrease the computational time [6].  

Additionally, the voltage regulation devices have time delays, 

deadbands, and hysteresis that require each power flow to be 

solved sequentially in order [6]. 

This paper proposes a novel method to intelligently perform 

QSTS simulation for part of the year while accurately 

modelling the PV impacts over the entire year.  The intelligent 

sampling (IS) algorithm works by analyzing the simulation 

input data and selecting a representative sample of inputs 

throughout the year. This reduced input list is then simulated 

using a powerflow solver and results are scaled to estimate the 

yearly simulation results. In general, [3] demonstrated that 

solving the QSTS for half the days randomly sampled results 

in situations with potentially very high error compared to 

running the entire year.  This is explained by the logic that 

randomly sampling could sometimes miss certain common 

situations (e.g. sampling only clear days, or sampling entirely 

from winter months).  The purpose of proposed intelligent 

sampling method is to ensure the full range of days throughout 

the year are analyzed in detail with the QSTS simulation, and 

then the results for the non-simulated days will be inferred by 

the simulation results for similar type days. The intelligent 

sampling method is explained in Section III, and Section IV 

provides a demonstration of the errors introduced by the 

method and the reduction in computational time. 

II. TEST SETUP  

The modified IEEE 13-bus circuit shown in Figure 1 is used 

in this work. A 2 MW PV plant is located at the end of the 

feeder and accounts for up to 40% of the peak load. Measured 

1-second resolution solar irradiance data and 5-minute 

measured load data are applied as the inputs to the simulation. 

The effectiveness of intelligent sampling will be determined by 

comparing the algorithm’s outputs with the actual results 

attained from the yearlong QSTS simulation. The brute-force 

 
Figure 1. Diagram of the modified IEEE 13-node feeder colored 
by voltage. 

SAND2017-6197C



 

 

simulation is performed at 1-second resolution using 

OpenDSS. Due to the significant impact variable PV 

generation can have on distribution system voltage regulators, 

the number of tap changes predicted for the year is used as the 

simulation accuracy evaluation metric. Based on feedback 

from distribution system engineers, the expected accuracy of 

number of regulator tap changes in a year should be within 10% 

of the detailed brute-force QSTS simulation and will be the 

focus of this work [3]. 

III. INTELLIGENT SAMPLING METHODOLOGY  

The brute-force QSTS simulation results are saved into 6-

hour periods (e.g. the number of tap changes per 6-hours), 

resulting in 1460 6-hour periods in a year. The objective of the 

intelligent sample selection is to select which of those 1460 6-

hour periods are the most effective to simulate with QSTS to 

estimate the yearly impacts.  

A. Categorizing Input Data 

The input data time-series profiles are analyzed using 

irradiance variability metrics found in the literature and simple 

load metrics such as the maximum, minimum, mean, and 

median over a given time period. The irradiance variability 

index (VI) [7] and irradiance variability score [8] were used for 

this work. Variability metrics were chosen, as opposed to static 

metrics, from the intuition that voltage regulator operations are 

caused by grid dynamics. Based on the simulated data, a 

stepwise linear regression was performed to identify the two 

statistics that are the mostly highly correlated with the number 

of regulator tap changes.  For this work, it was determined that 

the VI and the median of the load for each period were the most 

highly correlated statistics from the input data timeseries. 

Intelligent sampling (IS) decomposes the year into the 

smaller 6-hour time periods. Each of these time periods is then 

categorized and binned according to the calculated statistics 

from the input time-series during this period. The intuition is 

that “similar” time periods (i.e inside the same bin with the 

same input time-series statistics) will have closely correlated 

QSTS results. Due to the focus on variability, the length of the 

time period interval plays an important role. Too large a time 

interval will average out periods of high variability with idle 

periods, while very short intervals lack enough data to be able 

to differentiate points of interest. A 6-hour interval is chosen to 

split the day into quarters. The middle two quarters encompass 

most of the daylight hours while the first and fourth quarters 

cover morning and nighttime, respectively. 

Several binning techniques are available to group data with 

two input metrics for sampling. The simplest binning technique 

is to lay a grid across the 2D-plane and treat the resulting, 

equally sized, rectangles as individual bins, where samples are 

pulled per bin. This method is called stratified sampling and 

has been previously demonstrated for sampling representative 

days for simulation [9]. Empty bins, with zero entries, are 

possible with this approach but only “filled” bins are sampled.  

Another binning strategy, known as K-means clustering, 

employs an iterative approach to create clusters where the 

intra-cluster Euclidean distances between samples are 

minimized. Resulting clusters will have unique shapes and 

sizes. Many other binning techniques are possible by 

considering different geometric bin shapes and sizes. 

 A grid-based stratified sampling approach is used for this 

work. Being the simplest approach, it is easily adaptable to 

different circuit topologies, whereas K-means approaches 

suffer replicability and tuning issues, as the initial clusters 

locations are typically randomly placed. Clusters are also 

heavily influenced by outliers, which can be mitigated by 

removing outliers, but we do not want to make any assumptions 

beforehand on the designation or significance of outliers. 

Ultimately the grid-based stratified sampling approach requires 

the least circuit tuning, with robust and repeatable results.  

After the bins are compiled, a determined number of sample 

periods are randomly chosen from each bin and simulated with 

the QSTS power flow solver. These simulation results are used 

to establish an estimated average bin output (𝐵̂𝑖) for each bin 

(𝑖). The estimated total yearly tap changes (𝑦̂) is calculated 

according to (1), where 𝑛𝑖 is the total number of entries in bin 

𝑖, 𝑠 are individual bin samples, and 𝑣𝑖 is the number of samples 

drawn from 𝐵𝑖 . 

𝑦̂ =   ∑𝑛𝑖𝐵̂𝑖 (1) 

𝐵̂𝑖 =
𝑠1 +⋯+ 𝑠𝑣

𝑣𝑖
, 𝑣𝑖 ≤ 𝑛𝑖 (2) 

The accuracy of the yearly estimations will be determined by 

how close the estimated bin mean, 𝐵̂𝑖, is to the true bin mean, 

𝐵̅𝑖 . Simulating more bin samples will always increase 𝐵̂𝑖 ’s 

accuracy, but at the expense of simulation time. From Figure 

2, it is apparent samples are not spread evenly among the bins 

with most falling in bin 3.  For an accurate representation, 

 

Figure 2. Four bin grid example using VI and load median as 
input metrics 
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sampling also may not be even among the bins. One sample 

from bin 2 may suffice to estimate 𝐵̅2, but estimating 𝐵̅3may 

require more samples. The challenge then becomes 

determining the number of samples to draw from each bin to 

establish a good estimate of the bin means, especially as the 

number of bins increases. 

Figure 3 shows a binning example using a 21x21 grid.  

Figure 3a shows the average of the number of tap changes that 

occurred during the 6-hour periods for that bin. Figure 3b 

displays the number of 6-hour samples with the statistics that 

correlate to that bin. Although there is some correlation 

between input values and bin means, it is quite apparent that 

the relation is not linear due to the nonlinear power flow 

equations and piecewise discontinuities from the discrete 

operating states of the voltage regulators. We cannot apply a 

least squares fit to the input/output data, and any fit would be 

circuit dependent, requiring a large amount of simulation data 

to create the fit model. Figure 3a shows that the input metrics 

by themselves cannot accurately predict the tap change results, 

but the metrics can be used for intelligent stratified sampling.   

B. Sampling from Bins 

Several sampling methods were tested to try to reduce the 

simulation time as much as possible while keeping errors 

within the 10% tolerance. A key focus was to limit the number 

of assumptions that may or not hold across multiple circuits. 

This was also the reason we chose a simple binning technique 

as opposed to a complex one. The complex binning processes 

could be tuned extensively for our given circuit and yield good 

results, however, there was no certainty the tuning parameters 

were universal.  

On the same note, we did not make too many assumptions 

about the impact of outliers on sampling. Visually, outliers are 

easily identified in Figure 2 at high load and VI metrics. When 

grid size increases, outliers are typically the only sample in 

their bin and their 𝐵̅𝑖  is attained by simulating the one sample. 

However, (1) small bin sizes (low 𝑛𝑖 ) may or not may 

contribute much significance to the overall year metric. 

Even with the relatively small grid size in Figure 3, bin 

counts (number of samples in the bin) vary unpredictably 

across the range of inputs metrics. The high concentration 

when VI is zero is due to the dark time intervals, when the sun 

is not up and the solar variability is zero. Comparing Figure 3a 

and 3b, there is little correlation between bin mean and bin 

count. Outlier bins with few samples on the edge display the 

largest range in the average number of tap changes. Techniques 

such as outlier removal, undersampling or oversampling outlier 

bins, or combining outlier bins would have to make 

assumptions on the importance of outliers, which will not be 

consistent for different distribution systems being analyzed 

with QSTS. 

Another idea considered was to undersample the bins with 

low intra-bin variability between samples in the bin. Of course, 

this is a very limited approach since it assumes the true means 

are known beforehand, but some intuition narrows the focus.  

Bins where the VI index is zero, corresponding to dark time 

periods in early morning or late at night should have low PV 

induced variability in their output metrics. These time intervals 

are also numerous and take up about half the year. Therefore, 

simulation time can be greatly reduced by selecting only a 

couple samples from these bins to estimate the bin mean. 

However, as given by (1), bins with high sample counts get a 

larger weighting to estimate the yearly averages. Even small 

variations in the bin estimate are amplified by the high bin 

count.  

Using the same 21x21 grid as before, Figure 4 shows the 

individual bin’s standard deviation (𝜎𝐵) of the number of tap 

changes recorded for all samples in the bin multiplied by the 

bin count. The product term gives an approximate error margin 

on sampling a single or low number of entries from each bin. 

Large error margins are seen across the spectrum of bins, 

independent of bin size. For the above reasons, we concluded 

that an accurate representative sample needs to span the entire 

range of samples in the year.  

 
(a) Bin Mean Regulator Tap Changes 

  

 
(b) Bin Counts 

Figure 3.  21x21 grid bin example: (a) Bin Sample Counts (b) Bin 
Mean Regulator Tap Changes. White squares are empty bins 

   

  



 

 

A considerable effort was spent trying to develop 

convergence methods to test whether the individual 𝐵̂𝑖  were 

within the error tolerance of their true values. Rather than 

running simulations for a fixed sample size, the sample number 

would increase until convergence was detected. Some 

iterations would converge quickly while others needed 

additional samples. The intuition was that fixed simulation 

times had to be sized to bound the worse-case scenarios, while 

a variable method would display a shorter mean time to 

convergence. Some of the convergence methods considered 

were: tracking changes in 𝐵̂𝑖 when adding additional samples, 

tracking changes in 𝑦̂ yearly estimates when adding additional 

samples, and performing post-processing on samples to 

decrease sample variability. However, we were unable to find 

a 100% reliable convergence method and leave this to future 

work.  

In the chosen IS method, the number of samples chosen from 

the bins is determined by the bin count and the total number of 

samples desired. For example, if 50% simulation time 

reduction is desired, then the number sampled from the bin is 

simply the bin count divided by two. We determine the number 

of samples (𝜏𝑖) taken from the ith bin by  

𝜏𝑖 = ⌈
𝑛𝑖
𝑥
⌉ (3) 

where the ceiling function guarantees at least one entry from 

each nonempty bin. The variable x is a tuning parameter which 

is used to get the sum of 𝜏′𝑠 as close to the target sample size 

as possible. The optimal value of x is dependent on the number 

of non-empty bins, as well as the target sample size, and is 

found iteratively. 

For simplicity, the bins are always kept as a square grid of 

equal proportions. As a result, the number of bins is always 

equal to the square of the grid size. Grid size plays an important 

role in intelligent sampling. If the grid includes a large number 

of bins, then there are too many single entry bins, each of which 

must be included based on the previous outlier discussion, and 

too many total samples will be included. However, with few 

bins, there will be too much variability for the entries inside the 

bin and our “similar” samples hypothesis fails. The algorithm 

tries to find the largest grid size that can reach the target sample 

size. 

With the sampling constraint in (3), the grid size becomes 

closely tied to the minimum samples drawn, as illustrated in 

Figure 5. Due to the relatively small 1460 sample count 

(number of 6-hour periods in 365 days), even the smallest grid 

size at 10x10 has at least 60 filled bins, corresponding to about 

4% of the year. Smaller grid sizes introduce more intra-bin 

variability and weaken our initial binning assumption that 

intra-bin variability is minimal. With more intra-bin variability, 

additional samples needs to be drawn from the bin for 𝐵̂𝑖  to 

accurately estimate 𝐵̅𝑖. As a result, sampling smaller grid sizes 

becomes difficult to accurately estimate bin sizes while 

keeping the total sample size low. On a note, we tried a variety 

of sampling methods without the “one sample per bin” 

requirement. However, in these methods the unsampled filled 

bins had to be accounted for with a multiplier variable, which 

introduced too much error. 

IV. RESULTS 

The effectiveness of the intelligent sampling method is 

analyzed using a Monte Carlo (MC) simulation.  For each MC 

simulation, the mean absolute error (MAE) is calculated 

between the actual yearly regulator tap changes (𝑦̂) and the 

estimated yearly regulator tap changes (𝑦̅) averaged between 

the three regulators.   

MAE =
1

3
(𝑎𝑏𝑠(𝑦̂1 − 𝑦̅1) + 𝑎𝑏𝑠(𝑦̂2 − 𝑦̅2) + 𝑎𝑏𝑠(𝑦̂3 − 𝑦̅3)) (4) 

The goal is to find the smallest number of days necessary 

where the MAE is less than 10%. Additionally, we want to 

always perform within the error threshold, so the maximum of  

the MAE from all MC simulations is calculated as well. If the 

worst-case MAE from the MC is not bounded, then we cannot 

 
Figure 4: 21x21 grid bin example for number of regulator tap 
changes.  Color code shows each bin’s 𝜎𝐵,𝑖×𝑛𝑖as an approximate 
error margin on the bin. White squares are empty bins 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Minimum attainable sample count as a function of grid size 
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have confidence that results from a single intelligent sampling 

selection are not outliers with extreme error.  

The intelligent sampling results are compared to randomly 

sampling (RS) time periods out of the entries to ensure there is 

merit to binning inputs. Random sampling was tried in [2] and 

found to have too of large error margins to be effective.  

The MC simulation is run for 100,000 iterations at different 

target sample sizes and the results for the sampling method is 

displayed in Figure 6. The MAE are calculated for each MC 

iteration and the means of the iterations are shown for the IS 

and RS algorithms. The maximum MAE among the MC 

simulations are also displayed for two methods. The goal is for 

the mean and max MAE to be below 10% which is based on 

feedback from distribution system engineers [2].  

The mean MAE are relatively low and similar for the IS and 

RS algorithms. The means for IS and RS cross the 10% error 

tolerance at 7% and 12 %, respectively, of the year simulated. 

Above 30% of the year simulating, further increases in sample 

size has only marginal effects on the mean MAE. On the other 

hand, the maximum error is closely tied to sample size. The 

maximum error for the IS algorithm crosses the 10% threshold 

when approximately 43% of the time periods are selected to be 

simulated with QSTS. The RS algorithm’s maximum error 

crosses the 10% threshold around 85% of the year sampled and 

is more heavily influenced by outliers. To limit the potential 

errors, RS requires nearly twice as much data, which shows the 

IS algorithm has significant benefit compared to simple 

random sampling.  

Although Figure 6 shows the maximum error, it does not 

indicate just how many iterations are falling outside the 10%  

error margin. For this we plot the distribution of errors for the 

100,000 MC simulations using IS in Figure 7. The low samples 

sizes (<20% of year) have relatively flat error distributions with 

large parts of the tail falling outside the 10% tolerance. 

However, the 20-30% samples sizes fall mainly inside the 

margins with a small fraction actually violating the tolerance. 

Although previous constraints called for error to be entirely 

bounded, the improvement in simulation time may be worth the 

slight relaxation in error constraints. For example, a large 

parametric QSTS, with long simulation times, may trade some 

accuracy for increased speed. 

V. ESTIMATING SAMPLE ERRORS 

The very small percentage of MC simulations that are 

outside the error tolerances in Figure 7 suggests that lower 

samples sizes (20-30%) are possible if that small fraction of 

erroneous sampling scenarios is somehow detectable. Several 

convergence methods were experimented with, but ultimately 

it is difficult to accurately determine convergence for such a 

limited sample size. Sampling 30% of the year is 

approximately 400 samples, but due to the intelligent stratified 

sampling, each sample represents a unique set of sampling 

conditions based on that bin.  Most bins end up with only two 

or three samples in them, so it is not possible to detect the 

difference in accuracy or convergence between two or three 

samples.  This may be a limitation of the binning where, at low 

sample size and grid size, there is always a particular subset of 

samples that give high error. For example, all the bins have 

some intra-bin variability and if the chosen samples are all 

skewed the same way (high or low), the overall output metric 

will be skewed as well. 

One convergence strategy tried was to post-process the 

samples drawn using bootstrapping to determine the variability 

of the sample population. The idea was that the width of the 

distribution of yearly predictions from bootstrapping the 

samples would give an indication on the convergence to the 

true population mean. A fixed number of samples were initially 

drawn with IS, with at least one sample per bin. Next, using 

that sample population, smaller subsets were randomly drawn 

from the initial sample and used to calculate bin estimates and 

corresponding 𝑦̂ . Bootstrapping to repeat this secondary 

sampling multiple times gave us a distribution for each 𝑦̂ for 

 

Figure 6. Mean absolute error for voltage regulators’s yearly tap 
changes. Intelligent sampling method (IS) is compared with random 
sampling (RS)  

 
Figure 7. Error margins for regulator one tap changes using IS 
algorithm 



 

 

which we could find the mean and standard deviation. The goal 

was to use the standard deviation of the bootstrapping as the 

convergence metric. Results for a MC simulation of the above 

method are shown in Figure 8. Interestingly, the MC 

simulations where the true error fell outside the 10% margin do 

not typically exhibit very large standard deviations using 

bootstrapping. This seems to suggest that particular sample 

subsets are precise but not accurate and cluster tightly around 

an incorrect sample mean. For this reason, the convergence test 

is not reliable. Future work may involve trying to detect when 

a skewed sample is drawn from the bins. 

VI. CONCLUSION  

A new intelligent sampling algorithm has been presented to 

reduce simulation time for yearlong QSTS distribution system 

analysis with high penetrations of distributed PV. The 

algorithm analyzes the input irradiance and load data and 

selects representative time periods to simulate using QSTS. By 

simulating these representative samples, which accounts for a 

fraction of the total days of the year, the simulation time is 

decreased. The goal for this work was to estimate the number 

of regulator tap changes in a year within 10% error margins, 

and to achieve a 50% reduction in simulation time. With 

intelligent sampling, we demonstrate a 57% reduction in 

simulation time that meets error tolerances with the test circuit. 

The algorithm is also compared with a random sampling 

algorithm to demonstrate a significant improvement in the 

maximum possible sampling errors.  

Future work will continue to develop ideas to calculate 

stopping conditions for sampling during the simulation by 

determining statistical convergence in the confidence interval 

around the true answer.  While intelligent sampling only 

reduces the computational time of QSTS simulations to around 

50% of the brute-force yearlong simulation, IS methods can 

easily be incorporated into other algorithms.  For example, IS 

can select the days in the year to simulate, and then QSTS 

simulation of those days can use a variable time-step method 

[5] for additional speed.  We will also investigate using the 

intelligently selected sample periods to train machine learning 

algorithms to model the correlation to the number of tap 

changes [10].  
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Figure 8:  Bootstrapping convergence method showing sample 
standard deviation versus max error. 
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