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Abstract — In this work, a sampling method, known as
intelligent sampling (IS), is presented to reduce simulation time in
Quasi Static Time Series (QSTS) analysis on electrics grids with
distributed PV. The sampling method decomposes a year’s worth
of input solar and load data into six hour intervals and bins the
intervals according to irradiance and load metrics.
Representative samples are chosen from the bins and simulated
using standard power flow solvers. We show that when using the
IS method, only a fraction of the total entries in the year need to
be simulated. An example test circuit is used and the IS method
achieves a 57% reduction in simulation time while meeting
acceptable error margins.

|. INTRODUCTION

The addition of renewable and distributed generation on the
electric power system has altered traditional control techniques
and grid analysis methods. Historically, in distribution feeders,
power flows from the substation to the various loads along the
feeder length with the voltage regulators reacting to changes in
load and self-correcting to maintain normal operating voltages.
Increasing penetrations of distributed PV can create significant
power output fluctuations and reverse power flows along
specific segments of the feeder, causing voltage limit violations
and additional wear and tear on voltage regulation equipment
[1].

In order to model the variability of distributed PV, high-
resolution quasi-static time-series (QSTS) simulations are
required to simulate the grid impact at different times of year
and to determine any interactions between PV and existing
voltage regulation equipment [2]. To capture the interactions
and seasonal variations, accurate QSTS simulation should be
performed at high-resolution (<5 second time-step) and for the
duration of a year [3]. Certain QSTS metrics such as extreme
voltages and line losses can be approximated using relatively
large time steps, but voltage regulators and capacitor switching
require time-steps on the order of one to a few seconds. These
types of QSTS simulations are computationally intensive and
can take days to perform for large distribution system models.
The computational burden limits the practicality of QSTS for
parametric analysis [4] or for the hundreds of PV
interconnection requests that a utility receives.

There has been limited research into improving the speed of
QSTS simulations [5]. Due to the unbalanced nonlinear nature
of the distribution system power flow equations, it can be quite
challenging to decrease the computational time [6].
Additionally, the voltage regulation devices have time delays,
deadbands, and hysteresis that require each power flow to be
solved sequentially in order [6].
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Figure 1. Diagram of the modified IEEE 13-node feeder colored
by voltage.

This paper proposes a novel method to intelligently perform
QSTS simulation for part of the year while accurately
modelling the PV impacts over the entire year. The intelligent
sampling (IS) algorithm works by analyzing the simulation
input data and selecting a representative sample of inputs
throughout the year. This reduced input list is then simulated
using a powerflow solver and results are scaled to estimate the
yearly simulation results. In general, [3] demonstrated that
solving the QSTS for half the days randomly sampled results
in situations with potentially very high error compared to
running the entire year. This is explained by the logic that
randomly sampling could sometimes miss certain common
situations (e.g. sampling only clear days, or sampling entirely
from winter months). The purpose of proposed intelligent
sampling method is to ensure the full range of days throughout
the year are analyzed in detail with the QSTS simulation, and
then the results for the non-simulated days will be inferred by
the simulation results for similar type days. The intelligent
sampling method is explained in Section Ill, and Section IV
provides a demonstration of the errors introduced by the
method and the reduction in computational time.

Il. TEST SETUP

The modified IEEE 13-bus circuit shown in Figure 1 is used
in this work. A 2 MW PV plant is located at the end of the
feeder and accounts for up to 40% of the peak load. Measured
1-second resolution solar irradiance data and 5-minute
measured load data are applied as the inputs to the simulation.
The effectiveness of intelligent sampling will be determined by
comparing the algorithm’s outputs with the actual results
attained from the yearlong QSTS simulation. The brute-force



simulation is performed at 1-second resolution using
OpenDSS. Due to the significant impact variable PV
generation can have on distribution system voltage regulators,
the number of tap changes predicted for the year is used as the
simulation accuracy evaluation metric. Based on feedback
from distribution system engineers, the expected accuracy of
number of regulator tap changes in a year should be within 10%
of the detailed brute-force QSTS simulation and will be the
focus of this work [3].

111, INTELLIGENT SAMPLING METHODOLOGY

The brute-force QSTS simulation results are saved into 6-
hour periods (e.g. the number of tap changes per 6-hours),
resulting in 1460 6-hour periods in a year. The objective of the
intelligent sample selection is to select which of those 1460 6-
hour periods are the most effective to simulate with QSTS to
estimate the yearly impacts.

A. Categorizing Input Data

The input data time-series profiles are analyzed using
irradiance variability metrics found in the literature and simple
load metrics such as the maximum, minimum, mean, and
median over a given time period. The irradiance variability
index (VI) [7] and irradiance variability score [8] were used for
this work. Variability metrics were chosen, as opposed to static
metrics, from the intuition that voltage regulator operations are
caused by grid dynamics. Based on the simulated data, a
stepwise linear regression was performed to identify the two
statistics that are the mostly highly correlated with the number
of regulator tap changes. For this work, it was determined that
the VI and the median of the load for each period were the most
highly correlated statistics from the input data timeseries.

Intelligent sampling (IS) decomposes the year into the
smaller 6-hour time periods. Each of these time periods is then
categorized and binned according to the calculated statistics
from the input time-series during this period. The intuition is
that “similar” time periods (i.e inside the same bin with the
same input time-series statistics) will have closely correlated
QSTS results. Due to the focus on variability, the length of the
time period interval plays an important role. Too large a time
interval will average out periods of high variability with idle
periods, while very short intervals lack enough data to be able
to differentiate points of interest. A 6-hour interval is chosen to
split the day into quarters. The middle two quarters encompass
most of the daylight hours while the first and fourth quarters
cover morning and nighttime, respectively.

Several binning techniques are available to group data with
two input metrics for sampling. The simplest binning technique
is to lay a grid across the 2D-plane and treat the resulting,
equally sized, rectangles as individual bins, where samples are
pulled per bin. This method is called stratified sampling and
has been previously demonstrated for sampling representative
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Figure 2. Four bin grid example using VI and load median as
input metrics

days for simulation [9]. Empty bins, with zero entries, are
possible with this approach but only “filled” bins are sampled.

Another binning strategy, known as K-means clustering,
employs an iterative approach to create clusters where the
intra-cluster Euclidean distances between samples are
minimized. Resulting clusters will have unique shapes and
sizes. Many other binning techniques are possible by
considering different geometric bin shapes and sizes.

A grid-based stratified sampling approach is used for this
work. Being the simplest approach, it is easily adaptable to
different circuit topologies, whereas K-means approaches
suffer replicability and tuning issues, as the initial clusters
locations are typically randomly placed. Clusters are also
heavily influenced by outliers, which can be mitigated by
removing outliers, but we do not want to make any assumptions
beforehand on the designation or significance of outliers.
Ultimately the grid-based stratified sampling approach requires
the least circuit tuning, with robust and repeatable results.

After the bins are compiled, a determined number of sample
periods are randomly chosen from each bin and simulated with
the QSTS power flow solver. These simulation results are used
to establish an estimated average bin output (B;) for each bin
(i). The estimated total yearly tap changes (9) is calculated
according to (1), where n; is the total number of entries in bin
i, s are individual bin samples, and v; is the number of samples

drawn from B;.
y= Znigi @
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The accuracy of the yearly estimations will be determined by
how close the estimated bin mean, B;, is to the true bin mean,
B;. Simulating more bin samples will always increase B;’s
accuracy, but at the expense of simulation time. From Figure
2, it is apparent samples are not spread evenly among the bins
with most falling in bin 3. For an accurate representation,



sampling also may not be even among the bins. One sample
from bin 2 may suffice to estimate B,, but estimating B;may
require more samples. The challenge then becomes
determining the number of samples to draw from each bin to
establish a good estimate of the bin means, especially as the
number of bins increases.

Figure 3 shows a binning example using a 21x21 grid.
Figure 3a shows the average of the number of tap changes that
occurred during the 6-hour periods for that bin. Figure 3b
displays the number of 6-hour samples with the statistics that
correlate to that bin. Although there is some correlation
between input values and bin means, it is quite apparent that
the relation is not linear due to the nonlinear power flow
equations and piecewise discontinuities from the discrete
operating states of the voltage regulators. We cannot apply a
least squares fit to the input/output data, and any fit would be
circuit dependent, requiring a large amount of simulation data
to create the fit model. Figure 3a shows that the input metrics
by themselves cannot accurately predict the tap change results,
but the metrics can be used for intelligent stratified sampling.

B. Sampling from Bins

Several sampling methods were tested to try to reduce the
simulation time as much as possible while keeping errors
within the 10% tolerance. A key focus was to limit the number
of assumptions that may or not hold across multiple circuits.
This was also the reason we chose a simple binning technique
as opposed to a complex one. The complex binning processes
could be tuned extensively for our given circuit and yield good
results, however, there was no certainty the tuning parameters
were universal.

On the same note, we did not make too many assumptions
about the impact of outliers on sampling. Visually, outliers are
easily identified in Figure 2 at high load and VI metrics. When
grid size increases, outliers are typically the only sample in
their bin and their B; is attained by simulating the one sample.
However, (1) small bin sizes (low n;) may or not may
contribute much significance to the overall year metric.

Even with the relatively small grid size in Figure 3, bin
counts (number of samples in the bin) vary unpredictably
across the range of inputs metrics. The high concentration
when VI is zero is due to the dark time intervals, when the sun
is not up and the solar variability is zero. Comparing Figure 3a
and 3b, there is little correlation between bin mean and bin
count. Outlier bins with few samples on the edge display the
largest range in the average number of tap changes. Techniques
such as outlier removal, undersampling or oversampling outlier
bins, or combining outlier bins would have to make
assumptions on the importance of outliers, which will not be
consistent for different distribution systems being analyzed
with QSTS.

Another idea considered was to undersample the bins with
low intra-bin variability between samples in the bin. Of course,
this is a very limited approach since it assumes the true means
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Figure 3. 21x21 grid bin example: (a) Bin Sample Counts (b) Bin
Mean Regulator Tap Changes. White squares are empty bins

are known beforehand, but some intuition narrows the focus.
Bins where the VI index is zero, corresponding to dark time
periods in early morning or late at night should have low PV
induced variability in their output metrics. These time intervals
are also numerous and take up about half the year. Therefore,
simulation time can be greatly reduced by selecting only a
couple samples from these bins to estimate the bin mean.
However, as given by (1), bins with high sample counts get a
larger weighting to estimate the yearly averages. Even small
variations in the bin estimate are amplified by the high bin
count.

Using the same 21x21 grid as before, Figure 4 shows the
individual bin’s standard deviation (o) of the number of tap
changes recorded for all samples in the bin multiplied by the
bin count. The product term gives an approximate error margin
on sampling a single or low number of entries from each bin.
Large error margins are seen across the spectrum of bins,
independent of bin size. For the above reasons, we concluded
that an accurate representative sample needs to span the entire
range of samples in the year.
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Figure 4: 21x21 grid bin example for number of regulator tap
changes. Color code shows each bin’s o ; Xn;as an approximate
error margin on the bin. White squares are empty bins

A considerable effort was spent trying to develop
convergence methods to test whether the individual B; were
within the error tolerance of their true values. Rather than
running simulations for a fixed sample size, the sample number
would increase until convergence was detected. Some
iterations would converge quickly while others needed
additional samples. The intuition was that fixed simulation
times had to be sized to bound the worse-case scenarios, while
a variable method would display a shorter mean time to
convergence. Some of the convergence methods considered
were: tracking changes in B; when adding additional samples,
tracking changes in y yearly estimates when adding additional
samples, and performing post-processing on samples to
decrease sample variability. However, we were unable to find
a 100% reliable convergence method and leave this to future
work.

In the chosen IS method, the number of samples chosen from
the bins is determined by the bin count and the total number of
samples desired. For example, if 50% simulation time
reduction is desired, then the number sampled from the bin is
simply the bin count divided by two. We determine the number
of samples (t;) taken from the ith bin by

n:
=[] 3)

where the ceiling function guarantees at least one entry from
each nonempty bin. The variable x is a tuning parameter which
is used to get the sum of 7's as close to the target sample size
as possible. The optimal value of x is dependent on the number
of non-empty bins, as well as the target sample size, and is
found iteratively.

For simplicity, the bins are always kept as a square grid of
equal proportions. As a result, the number of bins is always
equal to the square of the grid size. Grid size plays an important
role in intelligent sampling. If the grid includes a large number
of bins, then there are too many single entry bins, each of which
must be included based on the previous outlier discussion, and
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Figure 5: Minimum attainable sample count as a function of grid size

too many total samples will be included. However, with few
bins, there will be too much variability for the entries inside the
bin and our “similar” samples hypothesis fails. The algorithm
tries to find the largest grid size that can reach the target sample
size.

With the sampling constraint in (3), the grid size becomes
closely tied to the minimum samples drawn, as illustrated in
Figure 5. Due to the relatively small 1460 sample count
(number of 6-hour periods in 365 days), even the smallest grid
size at 10x10 has at least 60 filled bins, corresponding to about
4% of the year. Smaller grid sizes introduce more intra-bin
variability and weaken our initial binning assumption that
intra-bin variability is minimal. With more intra-bin variability,
additional samples needs to be drawn from the bin for B; to
accurately estimate B;. As a result, sampling smaller grid sizes
becomes difficult to accurately estimate bin sizes while
keeping the total sample size low. On a note, we tried a variety
of sampling methods without the “one sample per bin”
requirement. However, in these methods the unsampled filled
bins had to be accounted for with a multiplier variable, which
introduced too much error.

IV. RESULTS

The effectiveness of the intelligent sampling method is
analyzed using a Monte Carlo (MC) simulation. For each MC
simulation, the mean absolute error (MAE) is calculated
between the actual yearly regulator tap changes () and the
estimated yearly regulator tap changes (y) averaged between
the three regulators.

1
MAE = §(abs(}71 =¥ +abs(H, — ¥,) + abs(P; — }_’3)) (4)
The goal is to find the smallest number of days necessary
where the MAE is less than 10%. Additionally, we want to
always perform within the error threshold, so the maximum of
the MAE from all MC simulations is calculated as well. If the
worst-case MAE from the MC is not bounded, then we cannot
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Figure 6. Mean absolute error for voltage regulators’s yearly tap

changes. Intelligent sampling method (IS) is compared with random

sampling (RS)

have confidence that results from a single intelligent sampling
selection are not outliers with extreme error.

The intelligent sampling results are compared to randomly
sampling (RS) time periods out of the entries to ensure there is
merit to binning inputs. Random sampling was tried in [2] and
found to have too of large error margins to be effective.

The MC simulation is run for 100,000 iterations at different
target sample sizes and the results for the sampling method is
displayed in Figure 6. The MAE are calculated for each MC
iteration and the means of the iterations are shown for the IS
and RS algorithms. The maximum MAE among the MC
simulations are also displayed for two methods. The goal is for
the mean and max MAE to be below 10% which is based on
feedback from distribution system engineers [2].

The mean MAE are relatively low and similar for the IS and
RS algorithms. The means for IS and RS cross the 10% error
tolerance at 7% and 12 %, respectively, of the year simulated.
Above 30% of the year simulating, further increases in sample
size has only marginal effects on the mean MAE. On the other
hand, the maximum error is closely tied to sample size. The
maximum error for the IS algorithm crosses the 10% threshold
when approximately 43% of the time periods are selected to be
simulated with QSTS. The RS algorithm’s maximum error
crosses the 10% threshold around 85% of the year sampled and
is more heavily influenced by outliers. To limit the potential
errors, RS requires nearly twice as much data, which shows the
IS algorithm has significant benefit compared to simple
random sampling.

Although Figure 6 shows the maximum error, it does not
indicate just how many iterations are falling outside the 10%
error margin. For this we plot the distribution of errors for the
100,000 MC simulations using IS in Figure 7. The low samples
sizes (<20% of year) have relatively flat error distributions with
large parts of the tail falling outside the 10% tolerance.
However, the 20-30% samples sizes fall mainly inside the
margins with a small fraction actually violating the tolerance.
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Figure 7. Error margins for regulator one tap changes using IS
algorithm

Although previous constraints called for error to be entirely
bounded, the improvement in simulation time may be worth the
slight relaxation in error constraints. For example, a large
parametric QSTS, with long simulation times, may trade some
accuracy for increased speed.

V. ESTIMATING SAMPLE ERRORS

The very small percentage of MC simulations that are
outside the error tolerances in Figure 7 suggests that lower
samples sizes (20-30%) are possible if that small fraction of
erroneous sampling scenarios is somehow detectable. Several
convergence methods were experimented with, but ultimately
it is difficult to accurately determine convergence for such a
limited sample size. Sampling 30% of the vyear is
approximately 400 samples, but due to the intelligent stratified
sampling, each sample represents a unique set of sampling
conditions based on that bin. Most bins end up with only two
or three samples in them, so it is not possible to detect the
difference in accuracy or convergence between two or three
samples. This may be a limitation of the binning where, at low
sample size and grid size, there is always a particular subset of
samples that give high error. For example, all the bins have
some intra-bin variability and if the chosen samples are all
skewed the same way (high or low), the overall output metric
will be skewed as well.

One convergence strategy tried was to post-process the
samples drawn using bootstrapping to determine the variability
of the sample population. The idea was that the width of the
distribution of yearly predictions from bootstrapping the
samples would give an indication on the convergence to the
true population mean. A fixed number of samples were initially
drawn with IS, with at least one sample per bin. Next, using
that sample population, smaller subsets were randomly drawn
from the initial sample and used to calculate bin estimates and
corresponding 9 . Bootstrapping to repeat this secondary
sampling multiple times gave us a distribution for each y for
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which we could find the mean and standard deviation. The goal
was to use the standard deviation of the bootstrapping as the
convergence metric. Results for a MC simulation of the above
method are shown in Figure 8. Interestingly, the MC
simulations where the true error fell outside the 10% margin do
not typically exhibit very large standard deviations using
bootstrapping. This seems to suggest that particular sample
subsets are precise but not accurate and cluster tightly around
an incorrect sample mean. For this reason, the convergence test
is not reliable. Future work may involve trying to detect when
a skewed sample is drawn from the bins.

VI. CONCLUSION

A new intelligent sampling algorithm has been presented to
reduce simulation time for yearlong QSTS distribution system
analysis with high penetrations of distributed PV. The
algorithm analyzes the input irradiance and load data and
selects representative time periods to simulate using QSTS. By
simulating these representative samples, which accounts for a
fraction of the total days of the year, the simulation time is
decreased. The goal for this work was to estimate the number
of regulator tap changes in a year within 10% error margins,
and to achieve a 50% reduction in simulation time. With
intelligent sampling, we demonstrate a 57% reduction in
simulation time that meets error tolerances with the test circuit.
The algorithm is also compared with a random sampling
algorithm to demonstrate a significant improvement in the
maximum possible sampling errors.

Future work will continue to develop ideas to calculate
stopping conditions for sampling during the simulation by
determining statistical convergence in the confidence interval
around the true answer. While intelligent sampling only
reduces the computational time of QSTS simulations to around
50% of the brute-force yearlong simulation, 1S methods can
easily be incorporated into other algorithms. For example, IS
can select the days in the year to simulate, and then QSTS

simulation of those days can use a variable time-step method
[5] for additional speed. We will also investigate using the
intelligently selected sample periods to train machine learning
algorithms to model the correlation to the number of tap
changes [10].
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