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Computational Challenges in Polymers

 Longest relaxation time t~ N3

« Chains are Gaussian coils — R ~ N2

— Number of chains must increase as R3 ~ N32so polymer
chains do not to see themselves through periodic boundary
conditions

* Double chain length — cpu required increases by at
least a factor of 24>~ 23
— 1-2 month simulation becomes 2-4 years

* Number of processors limited: ~ 500-1000
particles/processor




Polymer Simulation Models

CH, combined
to one bead




Coarse-Graining of Polymers

e To reach larger length/time scales, new coarse graining
methods are an active area of research

All-atom

* Reduced number of degrees of
freedom, simpler interaction
potentials, reducing the overall
computational effort

% Bead-spring * Larger time steps (10-20x)

* Reduced effective bead friction
due to lower energy barriers
and/or a smoother energy
landscape

Coarse-grained,
retain chemical
information

« Back-mapping to fully atomistic
model




Bead-Spring Model

» Short range - excluded volume
Interaction
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» Energy barrier prohibits chains from cutting through each
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State of the Art: Motion of Entangled Polymer

= Inner monomers
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* t14 motion is clearly seen for inner monomers
 Theoretically predicated second t'2 region still unresolved

2 million
core hours




Effect of Attractive Interactions

« Purely repulsive interactions widely used for modeling melts
- computationally the most efficient
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« Attractive interactions have essentially no affect on melt
properties
« Justify implicit assumption that the dynamics of entangled polymers

melts can be studied with short range, repulsive interactions
Grest. JCP (2016), in press
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» Cool melt slowly at constant pressure
« Compare repulsive and attractive interactions

Attractive Interactions: Temperature Effects

e Attractive interactions have little effect on the local packing,
single chain statics and entanglement length N, for all T
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* Attractive interactions reduce chain mobility for T < 2T,
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Coarse Graining Polymers

Polystyrene

PDMS

_ Poly(4-tert- G. Mauerl et al, RSC Adv., 5, 14065
butylstyrene) (2015)

D. Fritz et al, Phys. Chem. Chem. Phys. 13, 10412 (2011);,
A. Agrawal et al, Macromolecules 47, 3210 (2014)




Degree of Coarse Graining
Polyethylene

CosH194 Chain with increasing
degree of coarse graining

K M Salerno et al, Phys Rev Lett 116, 058303 (2016

e Largest lengths scales of
polymer dynamics are
controlled by entanglements
e Shortest time and length
scales required to resolve
dynamic properties not
obvious

e Probe the degree of
coarse graining (CGing)
required to simultaneously
retain significant atomistic
detail and access large
length and time scales




Coarse-Graining Methodology

All-atom Melt MD
simulation — LAMMPS*

Define Beads

Bonded Interactions by
Boltzmann Inversion

Nonbonded Interactions by
Iterative Boltzmann
Inversion (IBI)

*http://lammps.sandia.gov/




Bond Energy [kcal/mol]

Coarse-Grained Potentials
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* Average bond length increases, bond distribution broadens
as level of CGing increases
* Non-bonded potential softens as level of CGing increases
* Time step increases from 1 fsto 10 -20 fsfor A = 3
*.Chains cut through each other for A = 6

- extra non-crossing constraint




Chain Mobillity
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« Coarse graining reduces the number of degrees of
freedom, creating a smoother free-energy landscape

* Dynamics of Coarse Grained models 6-10 times faster
 Consistent scaling factor for n = 96 — 1920




Stress Relaxation and Viscosity
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» Longer, more entangled chains form progressively more

distinct plateau region
- Plateau modulus in good agreement with experiment

e Viscosity versus shear rate show shear thinning at high

shear rates, crossing over to shear independent regime

* Time and length scales not accessible by atomistic models




Summary/Outlook

« Atomistic Simulations ideally suited for phenomena on local

scale
- Present limitations 100's nanoseconds, 10's nanometers

* Bead-spring models ideally suited for addressing general
polymer phenomena, testing basic theoretical models
- Disregards atomistic details
- Can not quantitatively describe properties like structure, local
dynamics

« Systematic coarse grained models can bridge the gap of time

and length scales while retaining atomistic characteristics
- Reduces number of degrees of freedom and increases
fundamental time step
- Captures the atomistic detail needed for correct dynamics from
monomer to polymer scale
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