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» Objectives of this Presentation
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What is the problem (or problems)?

— Air pollution contributions from
vehicles

What is the means of attack?

— Regulation
— Optical Combustion Diagnostics

* Why Infrared?
— What could we find?
— Did we find what we were looking for?
— How can we be sure?

e What’s next?

Sandia 2.34 L Optical Engine



Vehicle Emissions harm health
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UCLA academics exposed mice to smog and found that breathing
emissions can turn the good cholesterol (HDL) into bad (LDL). | ==
... after two weeks of exposure to vehicle emissions, mice shovured |
oxidative damage in the blood and liver -- damage that was not |
reversed after a subsequent week of receiving filtered air. Altered
HDL cholesterol may play a key role in this damaging process,
they said. The mice exposed to emissions for two weeks “had a
much-decreased ability to protect against oxidation and
inflammation induced by low-density lipoprotein (LDL)
cholesterol... We suggest that people try to limit their exposure to
air pollutants.” Image: Los Angeles (1980)
(2013) Arteriosclerosis, Thrombosis and Vascular Biology '

Other problems include: fuel stock sustainability, transportation infrastructure

optimization, engine/fuel co-optimization, ...



S 24 Measuring Impacts
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Vehicle Emissions Regulation
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NO,
Standard (g/kWh)

2

60x Relduction

1990 1995 2000 2005 2010 2015
http://transportpolicy.net/index.php?title=File:NOx_and_PM_standards_for_heavy-duty_engines.png

“It seems unlikely that the internal combustion engine will be legislated out of existence,
but the quality of the engineering research required to meet the ever more stringent
legislation, while delivering a competitive product is very high indeed.” -Nick Collings

http://www-g.eng.cam.ac.uk/mmg/environmental/collings.html



Investigate where/why

o o pollution is created?

Develop the science to explain in-cylinder spray, combustion, and
pollutant-formation processes for both conventional diesel and LTC
that industry needs to design and build cleaner, more efficient engines

1997: Conventional Diesel 2012: LTC Diesel 2013+: Multiple Injection

(Single Injection) (Single Injection) (Conventional & LTC)
o—==m 1,0° ASI o—==> 1,0° ASI O——
R z;g: o~ | 4.0° ASI o~

i 8.0°
A

14.0° ASI

Post
Injection

O ——==TEER
| Lift-Off I

10.0°ASI

—1 Liqu'id Et{el [ Intermediate Ignition (CO, UHC) Bl Sccond-Stage Ignition of
1 P.re—lgmtlon Va-p.or Fuel B Second-Stage Ignition of Intermediate fuel-rich mixtures
I First-Stage Ignition (H,CO, H,0,,CO, UHC) Stoichiometry or Diffusion Flame (OH)  [Hll Soot or Soot Precursors (PAH)

UHC - Unburned Hydrocarbons, LTC — Low Temperature Combustion, PAH- polyaromatic hydrocarbon

Musculus, M. P. B., Miles, P. C., & Pickett, L. M. (2013). Conceptual models for partially premixed low-temperature diesel combustion. Progress in
Energy and Combustion Science (Vol. 39, pp. 246—283). Elsevier Ltd. doi:10.1016/j.pecs.2012.09.001



2% \WHY IR? Prior art - diagnostics
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Methods

Infrared
e MW-IR (InSb) 3-5um (TELOPS)
* Lens: 50mm IR /2.3
* Frame rate: 1 image / cycle
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Summary
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IR detection of fuel C-H stretch regions during
conventional combustion yields useful engine
diagnostic information like fuel vapor
penetration and perhaps lift off length.
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Significant limitations and uncertainties include:
* Changing/non-uniform background reflections
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Current Gaps
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Experimental diagnostics that can help
identify FORMATION vs OXIDATION of
criteria pollutants in-cylinder, for the

validation of CFD emissions models.

Need all the relevant data to solve
Reynolds Transport Theorem!

F(c,T,p,velocity) -> (change with time = transport + production + dissipation)

Coupled Turbulence-Chemistry Problem!?
Need Lagrangians...Time Resolved...
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What is (could be) next?

|dentify regions of formation/oxidation by bond type

Can geometric transformations to recover local data?
(Abel inversion?)

Look for mulit-spectral features that can de-convolve
Temp and Concentration dependence (e.g. R. Hanson)

PIV recording of mean velocity field, strain

‘predict’ next time step using experimental measured
values of T, ¢, strain, and transport.

Compare with next measurement to identify sources of
error in modeling.



Scientific barriers
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* Pressure broadening

* High temp interference e.g. OH, H20, CO2
(others? un-quantified?) — any suggestions?

e Background non-uniformity(ies)

* Self-absorption (concentration and path
length dependent)

* Gradient-induced beam steering between
source and detector.



Framing bigger problems...

COLLEGE of ENGINEERING

Technologies that maintain low emissions, reduce noise and
maximize system efficiency must be coupled with strategies that
combat wasteful use and promote thoughtful consumption.
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2% \WHY IR? Prior art - diagnostics
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Species detection — 1D measures
SAE 2007-01-0644: Grosch (Laser-Lab Gottingen). Fuel absorption @3.39um (using a He-Ne laser) . Sl engine.
Fuel concentration near spark plug. Sapphire fiber, no absorption @ 3.39 um.
SAE 2007-01-0639: Kakuho (Nissan), Hanson (Stanford). 2 colors Water absorption in near IR (around 1.4um) +
modulation. Sl engine. Residual gas concentration and temperature near spark plug.
SAE 2007-01-1849: Kawahara (Obayama Univ.) CO2 absorption at 4.26um . Sl engine. Residual gas concentration.
SAE 2006-01-3337: De Francqueville (IFPEN). CO2 absorption at 4.26um. Sl engine. Residual gas concentration.

Species detection — 2D measures
SAE 1999-01-3494: Jansons (Rutgers). IR camera 2000Hz DI Diesel engine. Simultaneous IR emissions @ 2.2um,
2.47um (water), 3.42um (preflame) and 3.8um (soot). Qualitative images.
SAE 2000-01-1800: Jansons (Rutgers). IR camera 2000Hz Sl and DI Diesel engines. Simultaneous IR emissions @
2.2um, 2.47um (water), 3.42um (preflame) and 3.8um (soot). Qualitative images.
IJER 2008 9:215: Jansons (Wayne State), Lin & Rhee (Rutgers). IR camera 1880Hz Sl and DI Diesel engines.
Simultaneous IR emissions @ 2.1um, 2.47um (water), 3.43um (preflame) and 3.8um (soot). HITRANS modelling.
HCHO signal week for Sl engines.
SAE 2011-01-1395: Squibb (Michigan State). FLIR Phoenix MID, 60Hz. 3-5um. 20us integration time. Fuel sprays
and combustion visualization. In-cylinder temperature.



