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Outline ) i

= |nverse problems in computational mechanics
= Discussion of inverse methods in Sierra-SD

= Connections with design of materials and acoustic
metamaterials




What is an Inverse Problem?
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What is an Inverse Problem? h) e,

Inverse problems arise when we have partial information and
indirect observations of a system and need to infer (hidden)
guantities of interest of the system.

An inverse problem can be viewed as a quest for information
that is not directly available from observations or
measurements.

The pursuit of a solution to an inverse problem calls for a
balance synergy between analysis and experimentation.




Inverse Problems: ) b
Observing the Unobservable

Suppose we have a “black box” system in the as-manufactured state that has
only partially known parameters

Question: can we non-destructively interrogate the system to “see what is inside™?

Typical unknown parameters:
« Material properties

« Loads

« Boundary conditions

* Residual stresses

» Size/shape/location of inclusions (e.g. composite materials)

Example applications:

« Seismic imaging

* Medical imaging

« Non-destructive evaluation
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Challenges

= |nverse problems can be ill-posed.

= Solution may not exist.
= Solution may not be unique.

= Solution may be unstable. That is, it may be sensitive to small
changes in the input data.

= Can be very computationally demanding.

= But... regularization can be used to mitigate these
Issues

= Or we can re-formulate the problem (different
objective)



Categories of Inverse Problems ) .

= |maging
= Ultrasound medical
= seismic
= Calibration of material models

= Structural material properties, circuits, thermal properties, etc.

= Optimal Experimental Design

= Best placement of sensors, test fixture setups

= Shape reconstruction

= E.g.inverse scattering

= Design of materials
= Design material microstructure to achieve desired properties
= E.g. Cloaking, camouflage, noise suppression, etc

7
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Inverse Problems - Motivation

For long-term monitoring of structural systems, parallel
multiphysics forward solvers (Sierra Mechanics) are not enough

Partially known information:

= material properties?
= boundary conditions?
= Joading conditions?
= |nternal flaws from aging?
= Preloading effects?
The missing link:

Experimental measurements and
solution of inverse problem




Inverse Problems - The Interaction of @

Experiments and Simulation
Experimental data @) inverse problem

PDE-
Constrained
Optimization

Numerical
Models

Interpretation

Desired system parameters (material properties, shape, loads, etc)




PDE-Constrained Optimization
Formulation

minimize  J(u, p)

Abstract w.p
optimization subject to g(u.,p) =0
formulation

L{u,pw):=J+ ng

W = Q;{Q;T(ﬁuugglgp — Lup) — ﬁpugalgp + Lpp
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Obijective function

PDE constraint
Lagrangian

First order optimality
conditions

Hessian calculation



Operator-Based Inverse Problems

U Pt Bement Code (Sera-SD)
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Full and reduced space
methods enabled




Buried Tunnel Model — MECE vs Leaz‘ém
Squares Objectives

Applied pressure
Buried inclusion model

Goal: locate buried inclusion and _
surrounding material properties Fixed boundary




Shear Modulus — MECE vs Least
Squares Objectives

Least Squares MECE

1000 iterations 30 iterations

Exact bulk moduli: 50 (matrix), 150 (inclusion)
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Residual Stress Inversion ) s

Equilibrium constraint: V -0 = 0
Approach: source inversion for tractions on cut-plane

Prestressed Tube Example

Exact stress field (from forward solution) Stress field from inverted tractions

Stress concentrated around fixed points Inverted stresses
*Joint work with Joe Bishop (1554) 14




Source Inversion in Sierra-SD )

= Goal: reconstruct acoustic field using inverse problem to
obtain acoustic patch inputs that produce the given
microphone measurements

Acoustic Pressure at Mic 1
\

= Additional research on-going

" How to regularize the inverse problem — gradient
regularization (penalize jumps across neighboring patches)

" How to place microphones




Delamination Detection ) i,

Partially-bonded plates — can we invert for
the bonded/debonded regions?

Steady-state pressure load at 2000Hz

Simply supported Bonded area De-bonded

on bottom area




Delamination Example )

Partially-bonded plates — can we invert for
the bonded/debonded regions?

Exact bonded/de-bonded areas

Initial guess for optimization: pgonded area  De-bonded
Completely de-bonded (penalty=1) Area (penalty=0)




A Revolution in Acoustic Metamateriafs—
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Breakthrough technology could allow us to mitigate harsh vibration
environments

Multiphase
composite

Lattice with
embedded
masses

Pentamode
lattice

Transformative
technology

—

cloaking Vibration isolation




Vibration Control with Acoustic ) i
Metamaterials

Problem: Harsh vibration environments pose serious
threat to sensitive components in structural systems.

Challenge:
« EXxisting damping materials only provide limited
vibration protection and cannot re-direct energy

As a Result:
« Sensitive components are exposed to potentially
damaging vibration profiles.
« Electronics packages, accelerometers, etc

Proposal: Large-scale optimization and
multi-material additive manufacturing to
design acoustic metamaterials for vibration
control.

ﬁ
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What is an acoustic metamaterial (&=

= Acoustic metamaterials: Multiphase composite materials
designed to produce dynamic material properties not found in
individual materials themselves

= Negative moduli, negative density, negative refractive index, imaginary
speed of sound!!! (not possible in traditional composite materials)

= First demonstrated in 2000 by Liu et al, Science




Mechanical Filter Design h

Unigueness of metamaterials — allow for
frequency-selective designs!

= Broadband — goal is to eliminate vibration in wide (or entire)
frequency band - foam pads work well for this

= Band-stop — negative stiffness or negative density

= Band-pass — negative stiffness AND negative density (see
paper on sharepoint)

= Notch — only filter at one particular frequency
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Candidate Metamaterial Designs @&z

Finite element models have been developed and analysis is on-going for 3 classes
of metamaterial designs. In all cases, local resonating elements are embedded in a

host material.
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_ _ Lattice with
Multiphase composite embedded Pentamode lattice

Masses

Inverse homogenization — to achieve spatially distributed material properties




Transient Shock Isolation ) S,

Goal: design the bottom material such that the top block does
not move

Initial guess optimized

Top block: steel
Bottom block: single phase fixed, two-phase,
multi-phase

23
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Inverse Problems: Mechanical Vibration )
Reduction

Laboratories
- Shell encases centrally-located payload,
surrounded by VE foams
- Periodic loading applied to base
- Minimize displacement at payload center by
adjusting VE material parameters and y
spring/dashpot constants /t\ Shell

Measurement Locations

Central Payload

Viscoelastic Foam
Layers

Spring/Dashpot Joints

i\Zi
Y
Base

24
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Case Study 1: Mechanical Vibration Reduction ).
- Displacement at measurement locations minimized (dependent on frequency)

Initial Guess Optimized

i3

_DispX
3.387e-05
1.818e-05
9.761e-06
5.240e-06
2.813e-06 _
_DispX
3.387e-05
1.818e-05
9.761e-06
5.240e-06
2.813e-06

Left: X-displacement in base and payload with initial material guesses, 440 Hz loading;
Right: X-displacement in design
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Case Study 1: Mechanical Vibration Reduction @ &=
o7 Complex Bulk Modulus for LFU Model, 440 Hz . Complex Shear Modulus for LFU Model, 440 Hz o
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OBSERVATIONS:
» Elastic Properties: Soft materials selected towards top, stiffer materials near base 26

Viscous Properties: Damping is added towards base of viscoelastic region
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Inverse Problems: Acoustic Cloaking Lf-

Left: Model Set up

2-D fluid region with circular VE solid inclusion

Inclusion consists of concentric rings w/ distinct material properties

Periodic acoustic load applied to end

Match forward problem pressure distribution by adjusting VE material parameters

ABSORBING BOUNDARY
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Right: Forward problem p
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Acoustic Cloaking )t

- Optimized VE foams allow recovery of desired pressure distribution

Forward Initial Guess Optimized

Left: Target acoustic pressure distribution, from forward problem
Center: Acoustic pressure distribution with initial material guess (2000 Hz Loading)
Right: Pressure distribution after convergence to optimized design



Acoustic Cloaking Results: Bulk Modulus ) o

Bulk modulus sensitive to frequency, and varies nontrivially along disk radius
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Figures: Real component of bulk modulus along radius, for various frequency 29



