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Motivation )=,

= We develop multiple single physics codes (Sierra Mechanics)

= thermal, mechanical, structural, aerodynamics
= Each code has extensive verification and regression test suites
= Coupled code verification is much more limited and difficult

= Some common couplings we consider
= thermal/mechanical
= fluid/structural or fluid/thermal
* mechanical/structural (pre-load)
= Verification of two-way coupling is required to demonstrate
accuracy of a coupling scheme:
= Example: CSS (first order) and GSS (second order) for fluid/structure
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First Attempt at Piston

= Problem is a spring-mass piston attached
to a semi-infinite fluid column

= Easy to derive the damped piston solution

*= These questions arose:

What happens in the fluid?
How to keep the problem linear?
Can the codes actually solve the problem?

Is the problem going to show second order
convergence?

= Whatisn’tin the test

Complex interfaces — only a single face
Non-matching meshed interfaces
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The Fluid Part of the Solution ) 2=

The surface velocity is input from the
piston to the fluid

The 1D linearized version of the Euler pU+vs =
equations: acoustic wave propagation P+ ng vy =
At the surface fluid velocity and pressure
are proportional p(0,t) = pcv(0,t), t>0
The solution for semi-infinite domain is
ing rightward from the v(z,t) = (0.t —x/c), x/e<t,
waves propagating rightwar ) vo(z), xz/c>t

piston surface (x=0)

cv,(0,t—x/c r/e<t
= can solve completely using characteristics p(:c,t) — { P P( ’ / )’ / /

po(x), x=/c>t

The resulting pressure provides the
boundary condition back to the piston




The Coupled Solution UL

= The damping force is proportional to piston velocity mz+kx = F(t)
Fg=-pA=—pcAv,=—pcAz = —cyqx

= |nitial conditions:
= fluid at rest (zero velocity)
= piston has zero displacement and nonzero velocity

z(t) = (vo/wq) exp(—E&wot) sin(wgqt)
wo =/ (k/m), £=c/(2mwy), wq=(1—E*)wo

= The piston will damp to zero for large enough damping coefficient

= The fluid transports whatever data is at the piston boundary at the
sound speed
= there is no smoothing of this data



Nonlinearities Are Avoided ) =
to Emphasize Coupling Aspect

= The fluid code actually solves the full Euler equations

= Small pressure/velocity perturbations in the fluid will reduce the
Euler equations to acoustics

= The fluid solver handles finite mesh motion
= We restrict to small displacements at the piston boundary

= We did not address a fully nonlinear piston but this could
be done with MMS

= Similar issues arose with thermal/mechanical verification
= Solid mechanics code is Lagrangian with finite deformations

Next 3 slides: aside on thermal/mechanical
coupled code verification




Thermal-Mechanical Coupling: )
A Pressurized Sphere

Features tested »

* Thermal expansion

* Pressurization

* Contact

Exact solution assumes linear

mechanics

e Derivation of the exact
solution is fairly simple

 Makes use of radial
symmetry and linearity
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Solution Maintains Small
Strains and Displacements
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Coupled Solution Demonstrates UL
Second Order Accuracy

For both temperatures (T) and displacement (D)
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Back to FSI: Can the Codes Solve &,
the Verification Problem?

= The updated exact solution requires more from the structural solvers
= Forcing function from the piston
= Non-zero initial conditions (displacement, velocity)

= The time integrator (Newmark beta) could not handle nonzero initial

displacements
= Accuracy was reduced to first order

= Forcing functions could be specified
= We updated further the exact solution

= Zero initial conditions for the piston

= Now the solution does not damp out to zero, but the fluid solution is smoother
=  Qur verification approach: divide and conquer:

= first develop single-physics tests to resolve errors

= then test the coupled code version to confirm accuracy
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Final Form of the Solution )=,

Mass
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Structural Only is Second Order

One shell element connected to one spring for each node
Damping applied based on constant damping coefficient
Body force using time dependent load function on the shell
Newmark time integrator

All variables converge second order
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Fluids Only is Second Order ) .

= Piston solution applied as
displacement BC on fluid 100
= Time integrators: BDF2 and AB2 ':ima
= Meshes with 50-3200 elements j 10%
= Verify fluid pressure, velocity, and 5 el
displacement at piston surface e vereer i
= Verify fluid pressure/velocity using 1001 ’ = _:c;fe' e o
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Coupled Convergence: ) =
CSS Scheme is First Order

= Test now exercises full two-way coupling
= Verified second order uncoupled for each physics

=  We seek to verify coupling accuracy for two schemes (CSS and GSS)
= (CSS should be first order
= GSS should be second order
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Coupled Convergence: )
GSS Scheme is Second Order
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3D Panel Flutter: More Challenging @i
Problem (No Exact Solution)

= 1 meter square thin plate, thickness = 4.6 mm, simply supported edges

= Plate given a sinusoidal initial velocity with maximum magnitude of 0.01 m/s
=  Mach number = 2.0, inviscid flow
= Aero-elastic parameter A ~ ratio of fluid dynamic pressure to plate stiffness

Dowell, Nonlinear Oscillations of a Fluttering Plate
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3D Panel Flutter: Stability Limit O
Consistent With Literature
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2D Panel Flutter: Did Not Observe e
Convergence With Three Meshes

= meshO

A =203, GSS
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Lessons Learned )

= Verification of simple coupled problems (piston) can
provide large impact to complex models
= Panel flutter
= DNS flow over plate

= Solution nonlinearities may need to be minimized to
emphasize code coupling aspects

= The codes need to be able to satisfy all the
constraints of the verification problem

= Decoupled versions of the problem are very useful

= Simplified verification problems can result in
improvements in solving larger scale, nonlinear
coupled problems
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