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The biological production of high value chemical compounds and fuels from low value biological feedstocks - holds great promise for transforming the availability of more environmentally
suitable chemicals. Unfortunately, production of biological compounds is still extremely inefficient. One of the most complex, time consuming, and expensive steps in bioengineering an
organism is the selection of enzymes and reactions that will optimize the production of a target compound. Manual search of all microbial organisms for enzymes and reactions that are
capable of synthesizing a compound is intractable and in many cases, infeasible and ultimately results in missing potential enzyme/reaction pairs.

BioRetroSynthesis (BRS) reduces the complexity of this step in bioengineering in three ways:

1. Builds a comprehensive database of bacterial metabolic networks (including genes, compounds and reactions).
2. ldentifies the minimal number of reactions and enzymes that need to be added to an organism to synthesize a select chemical compound.
3. Simulates metabolism to identify the optimal routes of the added reactions in production of a compound.
Overall, BRS streamlines an arduous and complex step of bioengineering a microbial organism, which will enable scientists to inexpensively expedite the production of important

chemical compounds.

Metabolic database construction

BRS requires a repository of metabolic information for microbial organisms. BRS builds an SQL database

of metabolic networks from their source Systems Biology Markup Language (SBML) files. We used 13,145

curated bacterial metabolic networks retrieved from Kbase (Arkin 2016) and reactions from the MetaCyc
database (Caspi 2010) to build a metabolic database database.
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ldentifying minimal number of reactions using
Integer linear programs

BRS uses a novel integer-linear-program (ILP) algorithm
to identify the minimum number of reactions (shortest
path) to be added to an organism to synthesize a

compound of interest. minimize c x,
Description of algorithm: subject to :
« All reactions in a metabolic database are variables l.
(x;). le_ _ oo For all internal compounds

« Variables are set as integers: bound to 0 and 1. 1-21
« Every compound in the database is represented by a i
mass balance equation. Equations are generated by Z x = 1,00 Forall external compounds
the summation of reaction variables: i=1
« Variables have a -1 coefficients for reactions that J
consume the compound and 1 coefficients for le;l
reactions that produce the compound. =
- Each mass balance equation constraint is set equal X, € {01}
to a different value dependent on whether the
compound is internal, external or the target

compound
* Internal compound = native to the organism that the target compound is to be produced in.

« External compound = non-native to the organism that the target compound is to be produced in.
 Target compound = compound that is to be produced in a select organism

« Objective Function (Z): reactions needed to produce the compound. Weights (c¢) of 0 given to
internal reactions and weights of 1 given to external reactions.

« Multiple pathways: To identify multiple pathways weights in Z for variables (reactions) found initially
are increased. New weights (W) are calculated by dividing 1 by the number of reactions in the initial
shortest path and then subtracting .01. W is then added new to initial weight. The problem is re-solved
and if a new pathway is found of equal length to the shortest path, W is added to the initial weights of
the new reactions identified in the new path and the problem is again solved until no further reactions
are identified.

Other features of BRS

Flux balance analysis: Once pathway reactions have been identified, BRS simulates metabolism in the
organism and predicts the efficiency of target compound production using Flux Balance Analysis. To
implement FBA, BRS uses the already developed CobraPy (Ebrahim 2013) toolbox to easily and quickly
predict maximum threshold yields of a compound.

Visualization: BRS visualization is done using GraphViz to generate graphs that depict the reactions and
corresponding genes that need to be added to an organism. Further more if FBA has been implemented
graphs can show the activity of reactions that were inserted into the select organism.

Validation of BRS

To validate the objective function (the minimal number of reactions) we searched pathways of target
compounds in organisms (E. Coli DH1) which have already been genetically modified and reported on to
produce the target compound.

For target compound
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BRS can proceed to simulate metabolism of the organism with the identified pathways on a glucose media
predicting theoretical yield of a compound and, in the invent that multiple pathways were identified, which
pathway will perform optimally.

Target Compound

Organism

Glucose Uptake Target Production

Theoretical Yield

3-methyl-2-butanone

Escherichia coli

Glucose Flux: -100.0 Target Flux: 88.1

0.88 mol 3-methyl-2-butanone/mol glucose

isobutanoate

Escherichia coli

Glucose Flux: -100.0 | Target Flux: 115.38

1.15 mol isobutanoate/mol glucose

butan-2-one

Escherichia coli

Glucose Flux: -100.0 | Target Flux: 21.74

0.22 mol butan-2-one/mol glucose

Future Work

Future plans for the development of this software include building a more comprehensive database which
includes not only biological reactions but chemical reactions as well thereby allowing for the user to obtain
information about both biological and chemical reactions needed to produce a compound of interest.
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