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Solid-state hydrogen storage

Solid-state hydrogen storage is one of the critical enabling technologies for creating
hydrogen-fueled transportation systems that can reduce oil dependency and mitigate the
long-term effects of fossil fuels on climate change.
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HyMARC: Hydrogen Storage Materials Research Consortium

HyMARC is a DOE-funded consortium established to
provide foundational understanding of phenomena
governing thermodynamics and kinetics limiting the
development of solid-state hydrogen storage materials

e Computational models and databases for high-
throughput materials screening

* New characterization tools and methods (surface,
bulk, soft X-ray, synchrotron)

e Tailorable synthetic platforms for probing nanoscale
phenomena

Theory, simulation, & Controlled synthesis
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Approach: Mitigate problematic physical phenomena

Energetics

Reversibility

Sorbents: Explore the effect
of open coordination sites,
polarizable groups, flexibility,
gate-opening phenomena,
and morphology

Metal hydrides: Control
reaction pathways and
explore destabilization and
doping to tune AH and AS
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— B hours
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Kinetics

Explore whether surface
modifications and
nanostructuring can optimize
the and kinetics of hydrogen
storage reactions

Identify the mechanisms by
which catalysts accelerate
hydrogenation/dehydrogena-
tion reaction rates

Explore nanostructuring and
amorphization as strategies
to improve the reversibility
and cycle-life in metal
hydrides

Test the cycle-life stability of
MOFs, porous polymers, and
carbons under high-pressure
hydrogen

= Sorbents: Develop Quantum Monte Carlo (QMC) and Grand Canonical Monte Carlo (GCMC)
tools to identify design rules for materials with H,-sorbent binding energies of 15-20 kJ mol* H,

= Metal hydrides: Evaluate doping, amorphization, surface modification and nanostructuring as
strategies to improve the kinetics and thermodynamics of complex metal hydrides to achieve
AH < 27 kJ mol* H,and AE, < 60 kJ mol! H,




Employ suite of complementary diagnostics to probe
phenomena at relevant length-scales

Motivation:

Surfaces are believed to play an important role in hydrogen storage reaction; exact role
remains unclear
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Technical Approach: In-situ techniques enable us S o Hl
to probe the surface chemistry for H, storage materials e Foosng ters £

LIGHT SOURCE

to pump to pump
1 L
P1<< Po| Pa<< Py
Pholoeleclrons
>< ><

scattered ions

Fluorescence
Photons

N Scanning
Ng Electro Sample Stage
!!f;‘};ﬁ!w‘?’:” @ spectromgter pe
R
LA
Low energy ion scattering (LEIS): Ambient pressure XPS: Scanning trans. x-ray microscopy (STXM):
Determine surface composition, H surface conc. Characterize O, Na, Al, and Ti binding Distribution of Ti within particles
(First monolayer only, <1 nm) (Surface and near sub-surface, <10 nm) (Bulk)
James White (AP-XPS, STXM)
What we hope to learn: @ Farid El Gabaly (AP-XPS, STXM)
. ey . Robert Kolasinski (LEIS)
* What is the exact surface composition of H, storage materials Lennie Klebanoff (XAS)
. Jonathan Lee (STXM)
* How do surfaces respond to temperature and H, environments |!!. Alexander Baker (STXM)
* What is the spatial distribution of species of interest Brandon Wood (theory)

Yi-Sheng Liu (XAS and XES)
Jinghua Guo (XAS and XES)
David Prendergast (theory)

* Can surfaces be modified to improve H, storage properties
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Reversibility in bulk complex metal hydrides

Des.
M(AH,), -— MA, + 1/2xyH,
Abs.
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TiCl, .
Bogdanovic et al. J. Alloys Comp. 1997, 253-254, 1
§ 2NaAlH, === 2NaH +2Al + 3H; | 5.cqanovic, schwickardi, U.S. Patent 6,106,301, 2000

% - - "\ Cheng et al. A Chem. Int. Ed. 2009, 48, 5828
Ma(NH-)» + 2LiH —= Li-Ma(NH)- + 2H eng et al. Angew. Chem. Int. Ed. .48,
9(NH2)2 = 2Mg(NH), 2| Luo etal. J. Alloys Comp. 2004, 381, 284

. . Pinkerton et al. J. Phys. Chem. C 2007, 111, 12881
+ — + + s L2
2LIBH4 MgH2 == 2LH Mng 4H2 Vajo et al. J. Phys. Chem. C. 2005, 109, 3719

Soloveichik et al. Int. J. Hydrogen Energy, 2009, 34, 916
+ ’
Mng 4H2 / Severa et al. Chem. Commun. 2010, 46, 421

_ Mg(BHy), ==

+ Gibbs energy minimization calculations to determine the thermodynamically favored
reaction pathways

» Synthesis of metal hydrides in various forms and formats (Graphene oxide supported
nanoparticles, hydrides@MOFs, thin films)

« Determine the effect of impurity phases, e.g. [B,,H,,]* and B,H; in borohydrides
» Explore effects of nanostructuring and additives on reversibility (AH® and AS®

= Our goal is to understand the critical aspects of enabling reversibility in complex metal by
improving thermodynamics and kinetics of solid-state hydrogen storage reactions
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KH doping increases the equilibrium vapor pressure of
Li-Mg-N-H

2LiNH, + MgH, (+0.03KH) < Li,MgN,H, + 2H, Cheng et al. Angew. Chem. Int. Ed. 2009, 48, 5828
PCT isotherms collected at 237 °C
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—> Equilibrium plateau pressure increases with KH-content, suggesting changes in the
thermodynamics of hydrogen desorption from Li-Mg-N-H upon KH doping




Destabilization of stable [B,,H,,]* species
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— We demonstrated that metal B,,H,,-species can be destabilized through hydrogenation under
high-pressure H2 to form borohydrides or through dehydrogenation to form metal borides

9

=R




Reversibility of Mg(BH,), under high-pressure H,
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= High-pressure hydrogenation of MgB, leads to increasing amounts of intermediates with time
= Under similar conditions pure Mg(BH,), generates a small amount of a new crystalline phase,
possibly MgB,,H,, or some other intermediate species
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In situ spectroscopy of Ti-doped NaAlH, model

system with AP-XPS
Why TiCl;-doped NaAlH,?

Realistic material: extenswely milled, cycles well
 Well-studied: abundance of experimental data in literature
to validate new characterization techniques
* Established models: lots of theory work has been done to
which results can be correlated

e Still new things to learn:
* No Ti on the surface (Ti, Ti,O3, or TiCl,) during H, desorption

« Zipper mechanism for dehydrogenation, involving subsurface Ti, is STX'VlTigfig%?ZSgp:rt'C'e
most consistent with our experimental observations m——
03,0 Initial Four Al species detected by AP- @)
XPS during dehydrogenation J
T 225- He Alenate
8 80
2 220 70-
g - = 60- Zipper” mechanism
<
21.0 > 507 H
: = 2 Na
Dehydrided 5153, 40 - 15], Al T\'
T T T T T T 1 = \./_ .
462 460 458 456 454 452 450 30
Binding Energy (eV) 204
No evidence of surface Ti before or 0 ~__
during desorption using XPS, LEIS, or 0 78 75 74 70 70
Auger electron spectroscopy. Binding Energy (eV) Chem. Rev. 2012, 112, 2164-2178
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Found that pure TiF;, TiCl; are inactive towards H, and don’t
promote H, dissociation

FTIR study of Ti-Cl bonding _ _ XAS study of Ti, F
Bulk or ball-milled TiCl; does  electronic structure
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TiF; doping into high-capacity B materials

. : -- from the independent LLNL/Sandia
Next Step: Intr_o@uce hydroger] st_orage material, Projoct on Ma(BH.)/MgB, —
and create additive/host material interface. Mg, hydrogenation @145 bar
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Investigate reactivity of TiF; /MgB, with H, in

the two kinetic regimes of initial MgB,
hydrogenation (H, dissociation, diffusion).
Understand reaction products, modifications
to activation barriers (XRD, FTIR, XAS). XAS
indicates reaction between TiF; and MgB.,. | Fheedge
H, y e
(“ Advance additive model from\ ; o
pure TiF, to TiF;/MgB,

MgB, + 5 mole % TiF,

— MgB, + 5 mole % TiF, cycled
1X in H, (140 bar, 360 °C)
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Demonstrated Li-N-H improved kinetics, reversibility,
and intermediate suppression at nanoscale

Bulk (2-step reaction pathway) H, cgcling in Li;N@6nm-Carbon at 250 °C (52wt% Ioading)l

LisN+H, == Li,NH+ LH == LiN+2H,
l 4 £
Nano(<12 nm, 1-step reaction pathway) RS
0%
Q ]
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US Patent Application # 62/235,930
Liquid
ammonia

-78 °C

Adv. Mater. Interfaces 2017, 4, 1600803  (Journal Covr)

O Developed an improved infiltration approach for metal amide/nitride infiltration into porous hosts using
liquid ammonia which enables high loadings (>50% by weight) of Li;N in porous carbons
L Demonstrated 5wt% reversible H, cycling and Li,NH intermediate suppression in Li;N@6nm-Carbon




New method for in-pore synthesis of nanoscale
Mg(BH,), inside MOFs and graphene aerogels

3 Mg(nBu), + 8 BH;*S(Me), — A, vac
3 Mg(BH,),*2S(Me), + 2 B(nBu),*S(Me), + ... 3 Mg(BH,),*2S(Me), — 3 Mg(BH,), + 6 S(Me),

LR LA Mg(BH4)2ing[apheneaerogé_l"'t

MIL-101 I i
. P I
2 | |« y-Mg(BH,), i
@ center of supertetrahedra M ; 4 %»-.-.—.-: ]
10020 30 40 %0 60 70 EDS maps as- syntheS|zed
26 (°)
BET Surface Pore Volume
Area (m2/g) (cclg)
Uninfiltrated 1628 0.800
Infiltrated 288 0.16 500nm 500nm

EDS maps, after desorption

Mg B
500nm 500nm

O Developed an in-pore synthetic approach to incorporate Mg(BH,),
into MOFs and nanoporous carbons

O SEM and EDS mapping shows Mg and B are evenly distributed
within the sample, confirming Mg(BH,), is inside the pores
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