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Abstract—We present DAGSENS, a new theory for transient sensitivity analysis
of Differential Algebraic Equation systems (DAEs), such as SPICE-level circuit

equations. The key ideas behind DAGSENS are, (1) to represent the entire

sequence of computations, starting from DAE parameters, all the way up to
the objective function whose sensitivity we need to compute, as a Directed

Acyclic Graph (DAG) called the “sensitivity DAG”, and (2) to compute the

required sensitivites efficiently (with time complexity linear in the size of the

sensitivity DAG) by leveraging dynamic programming techniques to traverse
the DAG. DAGSENS is simple, elegant, and easy-to-understand compared to

existing sensitivity analysis approaches: for example, in DAGSENS, one can

switch between direct and adjoint transient sensitivities just by changing the
direction of DAG traversal (i.e., topological order vs. reverse topological order).

Also, DAGSENS is significantly more powerful than existing sensitivity analysis

approaches because it allows one to compute the sensitivities of a much more

general class of objective functions, including those defined based on “events”
that occur during a transient simulation (e.g., a node voltage crossing a particular

threshold, a phase-locked loop (PLL) achieving lock, a signal reaching its

maximum/minimum value during the simulation, etc.). In this paper, we apply

DAGSENS to compute the sensitivities of important event-driven performance
metrics in several real-world electronic and biological applications, including

high-speed communication (featuring sub-systems such as I/O links and PLLs),

standard cell characterization, and gene expression in Drosophila embryos.

I. INTRODUCTION

This paper is about a new flexible and elegant approach to computing

transient parameter sensitivities. In recent years there has been a lot of

interest in transient sensitivity analysis for large-scale dynamical systems,

represented by linear/nonlinear differential-algebraic equations (DAEs) or

partial differential equations (PDEs). Within engineering and scientific

communities, it is well understood that performance sensitivities with respect

to model parameters or system input excitations are valuable for a variety of

purposes, including design optimization [1], uncertainty quantification [2],

stability analysis [3] and transient global error control [4].

In the field of integrated circuit design, transient sensitivities have his-

torically been very important [5], [6]. Specific circuit design applications

of transient adjoint parametric sensitivities have included automated circuit

tuning [7] and yield estimation [8], among others. The importance of

sensitivites in circuit design is likely to increase, particularly with the move

to progressively smaller process nodes. As the industry approaches the 14nm

and 7nm technology nodes, parameter variability is becoming ever more

pronounced, due to less control over the manufacturing process.

In general, there are two types of sensitivity algorithms: direct sensitivities

and adjoint sensitivities. Direct methods [6] are relatively easy to understand

and to implement, but scale poorly for problems with large numbers of

parameters. Adjoint methods [3], [9]–[13] are generally harder to understand

and implement, and have thus received much more recent attention in

the literature. Unlike direct methods, they scale very well to very large

numbers of parameters. Modern simulation problems can frequently consist

of millions, or even billions of degrees of freedom, and a similarly large

number of input parameters of interest. For such problems, computing

sensitivities can only be practically accomplished using an adjoint method.

Despite the long history and continued importance, transient adjoint

methods are often not well understood. Previous descriptions have lacked

generality, and it has been unclear how to apply adjoint methods efficiently to

many common objective functions of interest. Many papers, particularly early

ones [5], [7] have been based around the construction of an “adjoint circuit”.

Most recent papers are based around a more mathematical description, but

have restricted themselves to the sensitivity of solution variables at specific

points in time [9], [11], or integrals with respect to time of the solution [10],

[13]. Throughout this paper, we describe such objective functions as “final

point” and “integral” objective functions, respectively.

In practice, such objective functions are often inadequate, as objectives

of interest often don’t directly correspond to either a “final point” or an

“integral” style of function. Circuit designers frequently make use of metrics

we describe as “event-driven” objectives. Such objectives are defined as the

point in time at which a particular event happens. Examples include when

a signal exceeds a user-specified value, or possibly reaches a maximum

value. For a more complicated example, the objective function could be the

amount of time it takes for a PLL to lock to a new input frequency. The

“achievement of lock” is a transient event, and so the “time to lock” is an

event-driven objective function. If the PLL parameters change, so does the

time to lock (as well as the state of the PLL when lock is finally achieved).

These types of objectives are common in circuit analysis, and are exemplified

by the .MEASURE feature that is found in popular circuit simulators such

as HSPICE [14] and Xyce [15].

In this paper, we develop DAGSENS, a new theory for transient sensitivity

analysis based on directed acyclic graphs (DAGs), related to some of the

ideas found in the automatic differentiation literature [16], [17]. In this

approach, each computation and intermediate quantity is represented in a

DAG, starting from the parameters all the way to the objective function.

Once such a DAG is constructed, required sensitivities can be obtained by

traversing it. A key advantage is the simplicity and elegance of the DAG

approach: switching from a direct approach to an adjoint approach is as

simple as switching the direction of DAG traversal from forward topological

order to reverse topological order We also define and develop the notion of

event-driven transient sensitivity analysis, where the objective function is

defined based on events that happen during a transient run. We show how

the DAG formulation can enable straightforward extension for computing

direct and adjoint sensitivities of event-driven objective functions.

The remainder of this paper is organized as follows. In sections §II, general

background related to the solution of DAEs and sensitivity analysis are

presented. In sections §II-D a description of the DAG theory of sensitivity

analysis is described. In section §II-I the extension of this method to event-

based objective functions is discribed. Results for several representative

circuit problems and also a biological example are given in section §III.

II. CORE TECHNIQUES AND ALGORITHMS FOR DAG-BASED

EVENT-DRIVEN SENSITIVITY ANALYSIS

We now discuss the key ideas and core concepts behind DAGSENS.

A. DAE models of dynamical systems

Throughout this paper, we assume that the system we wish to analyze is

a DAE of the form:

d

dt
~q(~x(t), ~p ) + ~f(~x(t), ~u(t), ~p ) = 0, (1)

where ~x is the system’s state vector (e.g., a list of voltages and currents), ~p is

a vector of parameters with respect to which we wish to compute sensitivities

(e.g., transistor widths and lengths, parasitic resistances and capacitances), ~u

is a vector of inputs to the system, and t denotes time. We note that Eq. (1)

is capable of modelling virtually any electronic circuit at the SPICE level,

and many biological systems as well [18]–[20].

B. Transient analysis of DAEs

Given an initial condition ~x(t0) = ~x0, and time-varying inputs ~u(t) to

the DAE of Eq. (1), transient analysis refers to the problem of solving

for the time-varying DAE state ~x(t) over a time-interval [t0, tf ]. This is

accomplished by discretizing time into a sequence {t0, t1, . . . , tN−1}
(where tN−1 = tf ), and then approximating the respective DAE states

{~x0, ~x1, . . . , ~xN−1} by solving a sequence of “Linear Multi-Step” (LMS)

equations of the form [18], [19], [21], [22]:

mi∑

j=0

(

αi(−j) ~q (~xi−j , ~p ) + βi(−j) ~f (~xi−j , ~u(ti−j), ~p )
)

= ~0. (2)
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Method mi Coefficient j = 2 j = 1 j = 0

FE 1
αi(−j) – −

1
ti−ti−1

1
ti−ti−1

βi(−j) – 1 0

BE 1
αi(−j) – −

1
ti−ti−1

1
ti−ti−1

βi(−j) – 0 1

TRAP 1
αi(−j) – −

1
ti−ti−1

1
ti−ti−1

βi(−j) – 0.5 0.5

GEAR2 2
αi(−j)

1
ti−1−ti−2

−
1

ti−ti−2

−
1

ti−ti−1

−
1

ti−1−ti−2

1
ti−ti−1

+ 1
ti−ti−2

βi(−j) 0 0 1

Table 1. Coefficients used by several common LMS methods in Eq. (2).

Thus, at each step i (where 1 ≤ i ≤ N − 1), one solves Eq. (2) (using

techniques like Newton-Raphson iteration, homotopy, etc.) to determine ~xi,

based on mi previously calculated ~x values (from earlier steps). Table 1 lists

the α and β coefficients used by several common LMS methods, including

Forward Euler (FE), Backward Euler (BE), Trapezoidal (TRAP), and second-

order Gear (GEAR2), in the construction of Eq. (2) [18], [21], [23], [24].

C. Transient sensitivity analysis of DAEs

Suppose we have a DAE in the form of Eq. (1), with parameters ~p ⋆,

and transient solution ~x⋆(t) over the interval [t0, tf ]. The question behind

transient sensitivity analysis is: if we perturb the parameters slightly, how

will the transient solution change?

More precisely, suppose we change the parameters from ~p ⋆ to ~p ⋆ +∆~p.

As a result, let us say that the transient solution changes from ~x⋆(t) to

~x⋆(t)+∆~x(t). The question is: what is the relationship between ∆~x(t) and

∆~p in the limit as ∆~p → ~0? The answer, which is obtained by doing a

perturbation analysis of Eq. (1), is given by [9]–[11]:

∆~x(t) = Sx(t)∆~p, where (3)
[
d

dt

(
J
⋆
qx(t)Sx(t) + J

⋆
qp(t)

)
]

+
[
J
⋆
fx(t)Sx(t) + J

⋆
fp(t)

]
= 0|~x⋆|×|~p⋆|.

(4)

The J terms in Eq. (4) denote nominal time-varying Jacobians, i.e.,

J
⋆
qx(t) ,

∂~q

∂~x

∣
∣
∣
∣
~x⋆(t), ~p⋆

, J
⋆
qp(t) ,

∂~q

∂~p

∣
∣
∣
∣
~x⋆(t), ~p⋆

,

J
⋆
fx(t) ,

∂ ~f

∂~x

∣
∣
∣
∣
∣
~x⋆(t), ~u(t), ~p⋆

, and J
⋆
fp(t) ,

∂ ~f

∂~p

∣
∣
∣
∣
∣
~x⋆(t), ~u(t), ~p⋆

. (5)

Since ∆~x(t) is obtained by multiplying Sx(t) with ∆~p (Eq. 3), Sx(t) is

called the sensitivity of the solution ~x(t) with respect to the parameters ~p,

evaluated at ~p ⋆. And Eq. (4), a matrix-valued DAE that tracks the evolution

of the |~x⋆| × |~p ⋆| matrix Sx(t) over time, is called the “sensitivity DAE”.

Note that the sensitivity DAE does not directly give us an expression for

Sx(t). Rather, it needs to be solved for Sx(t). The “direct” approach for this

involves two rounds of transient analysis. In the first round, the original DAE

(Eq. 1) is solved using the LMS techniques of §II-B. This yields a sequence

of discretized time-points {ti} (where 0 ≤ i ≤ N − 1 and tN−1 = tf ), as

well as a corresponding sequence of DAE states {~x⋆(i)} (§II-B). These, in

turn, are used to compute the sequences of Jacobians {J⋆
qx(i)}, {J⋆

qp(i)},

{J⋆
fx(i)}, and {J⋆

fp(i)}.

In the second round, the sensitivity DAE (Eq. 4) is solved using the same

LMS techniques, and the same sequence of LMS methods (FE, BE, etc.) used

for the first round. The LMS equations that are solved (similar to Eq. 2) are:

mi∑

j=0

[

αi(−j)
[
J
⋆
qx(i− j)Sx(i− j) + J

⋆
qp(i− j)

]

+ βi(−j)
[
J
⋆
fx(i− j)Sx(i− j) + J

⋆
fp(i− j)

]
]

= 0|~x⋆|×|~p⋆|, (6)

where the α and β coefficients, as before, are looked up from Table 1.

Solving the LMS equations above yields the required sensitivities Sx(i)
for 0 ≤ i ≤ N , discretized over the time-interval [t0, tf ]. Note that the

initial condition Sx(0) (which is the sensitivity of the initial DAE state

~x⋆(0)) needs to be specified to start the chain of LMS solves above; in

practice, this is usually found by DC sensitivity analysis [10], [18].

D. The sensitivity DAG

Each step of the transient analysis of §II-B builds on previously computed

DAE state vectors, to solve for a new DAE state vector. This sequence of

computations fits naturally into a Directed Acyclic Graph (DAG) structure,

as shown in Fig. 1.

Fig. 1. The DAG structure underlying a transient simulation.

The nodes of the “sensitivity DAG” in Fig. 1 represent the quantities that

are computed during the transient simulation, and are labelled as such. The

edges represent dependencies amongst these quantities. For example, Fig. 1

assumes that the initial condition ~x⋆(0) is computed from ~p ⋆ (e.g., via DC

analysis [18], [19]); so, there is an edge that leads from the ~p ⋆ node to the

~x⋆(0) node. Similarly, ~x⋆(1) is assumed to be computed from ~x⋆(0) and

~p ⋆ by solving Eq. (2), using an LMS method with memory m1 = 1, such

as FE, BE, or TRAP (Table 1). So, there are edges leading from both the

~p ⋆ node and the ~x⋆(0) node to the ~x⋆(1) node. Finally, ~x⋆(2) is assumed

to be computed via an LMS method like GEAR2 that has memory m2 = 2
(Table 1). Therefore, when Eq. (2) is solved to determine ~x⋆(2), both ~x⋆(0)
and ~x⋆(1), as well as ~p ⋆, are used in the computation. So, there are edges

leading from all these three nodes to the ~x⋆(2) node.

While Fig. 1 stops at ~x⋆(2) for lack of space, it is easy to see that the

ideas behind the DAG construction can be extended to the entire length of

the transient simulation. In general, if the transient simulation has N points

with indices 0 ≤ i ≤ N − 1, the corresponding sensitivity DAG will have

N + 1 nodes (one for ~p ⋆, and one for each ~x⋆(i)). The ~x⋆(0) node will

have exactly one incoming edge, which will originate at the ~p ⋆ node. For

all other ~x⋆(i), the number of incoming edges will be 1+mi, where mi is

the memory of the LMS method used to compute ~x⋆(i) via Eq. (2). One of

these edges will originate at the ~p ⋆ node, while the others will originate at

the mi nodes prior to ~x⋆(i), i.e., the nodes ~x⋆(i− j) for 1 ≤ j ≤ mi.

Also, each edge of the sensitivity DAG has a weight, as shown in Fig. 1.

The weight of an edge from node u to node v, denoted w(u, v), is equal

to the partial derivative (or sensitivity) of v with respect to u; it measures

how much a small perturbation in u will affect the value of v. The weight

w(~p ⋆, ~x⋆(0)) is obtained by doing a DC perturbation analysis of Eq. (1) [18],

while all other weights are obtained by doing a perturbation analysis of

Eq. (2):

w(~p ⋆
, ~x

⋆(0)) =
∂~x⋆(0)

∂~p ⋆ = −J
⋆
fx(0)

−1
J
⋆
fp(0), (7)

w(~p ⋆
, ~x

⋆(i)) =
∂~x⋆(i)

∂~p ⋆ = −

[

αi(0)J
⋆
qx(i) + βi(0)J

⋆
fx(i)

]−1

[
mi∑

j=0

(

αi(−j)J⋆
qp(i− j) + βi(−j)J⋆

fp(i− j)

)]

,

∀ 1 ≤ i ≤ N − 1, and (8)

w(~x⋆(i− j), ~x⋆(i)) =
∂~x⋆(i)

∂~x⋆(i− j)
= −

[

αi(0)J
⋆
qx(i) + βi(0)J

⋆
fx(i)

]−1

[

αi(−j)J⋆
qx(i− j) + βi(−j)J⋆

fx(i− j)

]

,

∀ 1 ≤ i ≤ N − 1, 1 ≤ j ≤ mi. (9)



E. Objective functions and the sensitivity DAG

As mentioned in §I, in many applications, we are not directly interested

in the sensitivities of the solution ~x⋆(t), but would like to compute the

sensitivities of important transient performance metrics (i.e., “objective

functions”) derived from ~x⋆(t) (and denoted ~φ⋆ in this paper). Below, we

discuss two kinds of objective functions commonly found in the sensitivity

analysis literature (“final point” and “integral” objective functions), and show

how to incorporate these into the sensitivity DAG. Later (§II-H, §II-I, §II-J),

we will do the same for “event-driven” objective functions, a powerful new

class of objective functions not found in the existing literature.

Final point objective functions. These take the form:

~φ
⋆ = ~h(~x⋆(N − 1), ~p ⋆), (10)

where ~x⋆(N − 1) is the final point in the transient simulation.

Therefore, the sensitivity Sφ of such an objective function, evaluated at

~p ⋆, is given by:

Sφ = J
⋆
hx(N − 1)Sx(N − 1) + J

⋆
hp(N − 1), (11)

where the Jacobian symbols have their usual meanings.

Fig. 2. Adding a final point objective function to the sensitivity DAG of Fig. 1.

To include such an objective function in the sensitivity DAG, we add a

new node ~φ⋆ to the DAG, with two incoming edges: one from ~p ⋆ with

weight J⋆
hp(N−1), and one from ~x⋆(N−1) with weight J⋆

hx(N−1). This

is illustrated in Fig. 2 for the simple case N = 3.

Integral objective functions. These take the form:

~φ
⋆ =

∫ tf

t=t0

~h(t, ~x⋆(t), ~p ⋆) dt. (12)

Therefore, we have:

Sφ =

∫ tf

t=t0

(
J
⋆
hx(t)Sx(t) + J

⋆
hp(t)

)
dt. (13)

In practice, the integral in Eq. (13) is approximated by a summation:

Sφ ≈

N−2∑

i=0

[(
J
⋆
hx(i)Sx(i) + J

⋆
hp(i)

)
(ti+1 − ti)

]
. (14)

Fig. 3. Adding an integral objective function to the sensitivity DAG of Fig. 1.

To include such an objective function in the sensitivity DAG, we add a

new node ~φ⋆ to the DAG, with N incoming edges: one from ~p ⋆, and the

rest from ~x⋆(i), where 0 ≤ i ≤ N−2 (i.e., from every point in the transient

simulation except the last). The weights of these edges are:

w(~p ⋆
, ~φ

⋆) =

N−2∑

i=0

(
J
⋆
hp(i)(ti+1 − ti)

)
, and (15)

w(~x⋆(i), ~φ⋆) = J
⋆
hx(i)(ti+1 − ti), ∀ 0 ≤ i ≤ N − 2. (16)

This is illustrated in Fig. 3 for the simple case N = 3.

With the introduction of a node representing the objective function,

the sensitivity DAG is “complete”: it now accurately represents all the

intermediate computations involved in calculating the objective function

starting from the DAE parameters. Moreover, the partial sensitivities of these

computations are also available from the DAG’s edge-weights. Thus, we now

have all the information needed to do an end-to-end sensitivity analysis.

F. Sensitivity analysis = DAG path enumeration

Fig. 4. The DAG of Fig. 2, with edge-weights denoted by partial derivatives.

Our goal is to compute the sensitivity of the objective function ~φ with

respect to the DAE parameters ~p, evaluated at ~p ⋆. Let us take a closer look

at this computation, through an example. Fig. 4 shows the sensitivity DAG

for a 3-step transient simulation and a final point objective function. Indeed,

this is the same DAG derived in Fig. 2, except that the notation for the

edge-weights has been changed to make it clear that the edge-weights are,

in fact, partial derivatives. Now, let us repeatedly apply the chain rule to

find the sensitivity of the objective function:

Sensitivity
we need

=
d~φ

d~p

∣
∣
∣
∣
∣
~p⋆

=
d~φ⋆

d~p ⋆

︸︷︷︸

Chain Rule

=
∂~φ⋆

∂~p ⋆ +
∂~φ⋆

∂~x⋆(2)

d~x⋆(2)

d~p ⋆

︸ ︷︷ ︸

Chain Rule

=
∂~φ⋆

∂~p ⋆ +
∂~φ⋆

∂~x⋆(2)

(
∂~x⋆(2)

∂~p ⋆ +
∂~x⋆(2)

∂~x⋆(1)

d~x⋆(1)

d~p ⋆

︸ ︷︷ ︸

Chain Rule

+
∂~x⋆(2)

∂~x⋆(0)

d~x⋆(0)

d~p ⋆

︸ ︷︷ ︸

Chain Rule

)

=
∂~φ⋆

∂~p ⋆ +
∂~φ⋆

∂~x⋆(2)

(
∂~x⋆(2)

∂~p ⋆ +
∂~x⋆(2)

∂~x⋆(1)

(
∂~x⋆(1)

∂~p ⋆ +
∂~x⋆(1)

∂~x⋆(0)

d~x⋆(0)

d~p ⋆

︸ ︷︷ ︸

Chain Rule

)

+
∂~x⋆(2)

∂~x⋆(0)

∂~x⋆(0)

∂~p ⋆

)

=
∂~φ⋆

∂~p ⋆ +
∂~φ⋆

∂~x⋆(2)

(
∂~x⋆(2)

∂~p ⋆ +
∂~x⋆(2)

∂~x⋆(1)

(
∂~x⋆(1)

∂~p ⋆ +
∂~x⋆(1)

∂~x⋆(0)

∂~x⋆(0)

∂~p ⋆

)

+
∂~x⋆(2)

∂~x⋆(0)

∂~x⋆(0)

∂~p ⋆

)

=

[
∂~φ⋆

∂~p ⋆

︸︷︷︸

Path: ~p⋆→ ~φ⋆

+
∂~φ⋆

∂~x⋆(2)

∂~x⋆(2)

∂~p ⋆

︸ ︷︷ ︸

Path: ~p⋆→ ~x⋆(2)→ ~φ⋆

+
∂~φ⋆

∂~x⋆(2)

∂~x⋆(2)

∂~x⋆(1)

∂~x⋆(1)

∂~p ⋆

︸ ︷︷ ︸

Path: ~p⋆→~x⋆(1)→ ~x⋆(2)→ ~φ⋆

+
∂~φ⋆

∂~x⋆(2)

∂~x⋆(2)

∂~x⋆(1)

∂~x⋆(1)

∂~x⋆(0)

∂~x⋆(0)

∂~p ⋆

︸ ︷︷ ︸

Path: ~p⋆→ ~x⋆(0)→ ~x⋆(1)→ ~x⋆(2)→ ~φ⋆

+
∂~φ⋆

∂~x⋆(2)

∂~x⋆(2)

∂~x⋆(0)

∂~x⋆(0)

∂~p ⋆

︸ ︷︷ ︸

Path: ~p⋆→~x⋆(0)→ ~x⋆(2)→ ~φ⋆

]

=
∑

π | π is a path from

~p
⋆

to ~φ
⋆

in the sensitivity DAG

(

Product of edge-weights of π in reverse

)

.

The derivation above shows that the sensitivity we want to compute is a

sum of terms, where each term corresponds to a unique path from ~p ⋆ to
~φ⋆ in the sensitivity DAG; more precisely, each term is a “product of edge-

weights in reverse” of some path from ~p ⋆ to ~φ⋆. Thus, we have a key insight:

solving the sensitivity analysis problem is the same as enumerating paths in

the sensitivity DAG. This holds true for all sensitivity analysis problems, but

we omit a rigorous proof due to space constraints.

Taking a cue from this, let us define the “weight of a path” in the sensitivity

DAG to be the product of weights of all the edges along the path, in reverse.

Also, given any two nodes u and v in the DAG, we define σ(u, v) to be the



sum of the weights of all the paths in the DAG that start at u and end at

v. Thus, solving the sensitivity analysis problem is the same as computing

σ(~p ⋆, ~φ⋆) in the sensitivity DAG.

G. Direct and Adjoint approaches to DAG path enumeration

We just reduced sensitivity analysis to the problem of enumerating all

paths in the sensitivity DAG between ~p ⋆ and ~φ⋆, and adding up their weights.

The brute-force approach to this, however, is computationally infeasible

because the number of such paths grows exponentially as the size of the

DAG [25], [26]. Therefore, we leverage dynamic programming techniques

to efficiently enumerate DAG paths, and thus solve the sensitivity analysis

problem in linear time in the size of the sensitivity DAG [25], [26].

Direct sensitivity analysis: Optimal sub-structure for dynamic programming

(a)

Adjoint sensitivity analysis: Optimal sub-structure for dynamic programming

(b)

Fig. 5. The key ideas behind efficient direct and adjoint DAG path enumeration in
DAGSENS.

Fig. 5 illustrates the key idea that we exploit, which is that the problem of

computing σ(~p ⋆, ~φ⋆) can be repeatedly broken down into smaller, simpler,

sub-problems. There are 2 ways to do this: (1) the “direct” approach (Fig. 5a),

where we keep the source ~p ⋆ constant, and express σ(~p ⋆, ~φ⋆) in terms of

σ(~p ⋆, u), where u is one step closer to ~p ⋆ than ~φ⋆, or (2) the “adjoint”

approach (Fig. 5b), where we keep the destination ~φ⋆ constant, and express

σ(~p ⋆, ~φ⋆) in terms of σ(v, ~φ⋆), where v is one step closer to ~φ⋆ than ~p ⋆.

Both approaches give us optimal sub-structures for dynamic programming,

as formalised in Algorithms 1 and 2 respectively.

Algorithm 1: Direct transient sensitivity analysis in DAGSENS

Input: The sensitivity DAG G, with nodes ~p ⋆ and ~φ⋆ representing the

DAE parameters and the objective function respectively

Output: The sensitivity σ(~p ⋆, ~φ⋆), calculated via dynamic

programming using the “direct” optimal sub-structure (Fig. 5a)

1 σ(~p ⋆, ~p ⋆) = I|~p⋆|×|~p⋆|

2 order = topological_sort(G)
3 for u in order do

4 σ(~p ⋆, u) = 0|u|×|~p⋆|

5 for v such that (v, u) is an edge in G do

6 σ(~p ⋆, u) += w(v, u) σ(~p ⋆, v)

7 return σ(~p ⋆, ~φ⋆)

Algorithms 1 and 2 both compute a topological ordering, i.e., a permuta-

tion of the DAG nodes such that if (u, v) is a DAG edge, then u occurs

before v in the permutation [25], [26]. But while Algorithm 1 traverses the

nodes in topological order, Algorithm 2 traverses them in reverse topological

order. At every such node u (v), Algorithm 1 (2) computes σ(~p ⋆, u)
(σ(v, ~φ⋆)), making use of the optimal sub-structure logic in Fig. 5a (5b).

This continues until, finally, the ~φ⋆ (~p ⋆) node is reached, at which time the

computed σ(~p ⋆, ~φ⋆) is returned as the required sensitivity. Thus, while Al-

gorithm 1 involves computing the sensitivity of each intermediate DAG node

with respect to the DAE parameters, Algorithm 2 involves computing the

sensitivity of the objective function with respect to each intermediate DAG

Algorithm 2: Adjoint transient sensitivity analysis in DAGSENS

Input: The sensitivity DAG G, with nodes ~p ⋆ and ~φ⋆ representing the

DAE parameters and the objective function respectively

Output: The sensitivity σ(~p ⋆, ~φ⋆), calculated via dynamic

programming using the “adjoint” optimal sub-structure

(Fig. 5b)

1 σ(~φ⋆, ~φ⋆) = I|~φ⋆|×|~φ⋆|

2 order = reversed(topological_sort(G))
3 for v in order do

4 σ(v, ~φ⋆) = 0|~φ⋆|×|v|

5 for u such that (v, u) is an edge in G do

6 σ(v, ~φ⋆) += σ(u, ~φ⋆) w(v, u)

7 return σ(~p ⋆, ~φ⋆)

node. So, the former (latter) implements direct (adjoint) sensitivity analysis

in DAGSENS [3], [9]–[13]. Indeed, Algorithm 2’s reverse order traversal

is equivalent to the idea of “integrating the sensitivity DAE backwards in

time” – the interpretation provided for adjoints in many sensitivity analysis

papers [9], [10], [13]. Also, there are strong parallels between direct/adjoint

DAG path enumeration in DAGSENS and forward/reverse mode automatic

differentiation [17].

Thus, just by changing the order in which the DAG is traversed,

DAGSENS allows one to switch between direct and adjoint sensitivity

analysis. We believe that this is a level of simplicity and elegance that is

lacking in existing sensitivity analysis approaches. Moreover, DAGSENS

works seamlessly for all LMS methods and easily allows the use of different

LMS methods for different transient time-steps – all without the need

for re-deriving the adjoint equations, specialized matrix structures, and/or

complicated backwards-in-time integration formulas for each different LMS

method. Also, we believe that due to its ease of understandability, DAGSENS

can make the benefits of sensitivity analysis accessible to a a much wider

audience, including device engineers, circuit designers, and students.

Finally, we would like to point out that Line 6 of Algorithm 2 involves

pre-multiplying the edge-weight w(v, u) by the matrix σ(u, ~φ⋆). Since

most edge-weights are of the form B−1C (Eqs. 7, 8, and 9), this is a

computation of the form AB−1C, which can be done either as A(B−1C),
or as (CT ((BT )−1AT ))T (where matrix/matrix solves are sparse in many

applications of interest). If the number of rows of A is much smaller than

the number of columns of C (i.e., the dimension of the objective function

is much smaller than that of the DAE parameter space), the latter is likely

to be much more efficient than the former, which we exploit heavily in

DAGSENS.

H. Event-driven objective functions

We now introduce a powerful new class of objective functions that have

not been addressed in the existing sensitivity analysis literature. The key

idea is that we would like to define “events” that happen during a transient

simulation (e.g., a node voltage crossing a particular threshold, a PLL in

a circuit achieving lock, a species in a chemical reaction network reaching

its maximum/minimum concentration), and then compute the sensitivities of

objective functions that depend on these events.

For our purposes, an “event” ev is specified by the condition:

gev(τ
⋆
ev, ~x

⋆(τ⋆
ev), ~p

⋆) = 0, (17)

where τ⋆
ev is the time at which the event occurs during a transient simulation.

In practice, we may need additional constraints to uniquely identify the event

(such as limits on τ⋆
ev, or a specification such as “the third time Eq. (17) is

satisfied”, etc.). But for sensitivity analysis, we can ignore these additional

specifications because we only do perturbation analysis of Eq. (17) in a

small neighbourbood around τ⋆
ev.

Note that events corresponding to a signal reaching its maxi-

mum/minimum value are specified by adding a new DAE state variable

that represents the derivative of the signal in question, and by equating this

variable to zero via Eq. (17) (see §III for examples).



Given a sequence of M events 1 ≤ ev ≤ M , our event-driven objective

function takes the form:

~φ
⋆ = ~h(τ⋆

1 , τ
⋆
2 , . . . , τ

⋆
M , ~x

⋆(τ⋆
1 ), ~x

⋆(τ⋆
2 ), . . . , ~x

⋆(τ⋆
M ), ~p ⋆). (18)

Thus, event-driven objective functions depend on the times of occurrence

of a set of events, as well as the DAE states at these times, both of which

change when the DAE parameters are perturbed. We would like to compute

the sensitivity of event-driven objective functions by taking into account both

these sets of changes.

I. Sensitivity analysis of event-driven objective functions

Let us denote by Sτev and Sxev , where 1 ≤ ev ≤ M , the sensitivities

of our event times, and DAE states at these times, respectively. Note that

Sxev 6= Sx(τ
⋆
ev); while Sx(τ

⋆
ev) only takes into account the sensitivity of the

DAE state ~x, Sxev takes into account the sensitivities of both the DAE state

~x and the event time τev. With this distinction in mind, perturbation analysis

of Eq. (17) yields:

Sτev = −
J⋆
gevxSx(τ

⋆
ev) + J⋆

gevp

J⋆
gevx

~̇x
⋆
(τ⋆

ev) + J⋆
gevτ

, and (19)

Sxev = Sx(τ
⋆
ev) + ~̇x

⋆
(τ⋆

ev)Sτev , ∀ 1 ≤ ev ≤ M, where (20)

~̇x
⋆
(τ⋆

ev) =
d

dt
~x

⋆(t)

∣
∣
∣
∣
τ⋆

ev

, (21)

and where Jacobian terms have their usual meanings and are all evaluated at

(τ⋆
ev, ~x

⋆(τ⋆
ev), ~p

⋆). Therefore, we first need to solve for the event, i.e., find

τ⋆
ev and ~x⋆(τ⋆

ev), before we can compute Sτev and Sxev . We do this by finding

a time-point ti of the transient simulation where the gev(., ., .) function

undergoes a sign change between ti and ti+1. We then use a modified LMS

strategy to solve for the event, by solving:

(

αev(0, τ
⋆
ev) ~q (~x

⋆(τ⋆
ev), ~p

⋆) + βev(0, τ
⋆
ev) ~f (~x⋆(τ⋆

ev), ~u(τ
⋆
ev), ~p

⋆)
)

+

mev∑

j=1

(

αev(−j, τ
⋆
ev) ~q (~x

⋆(i− j + 1), ~p ⋆)

+ βev(−j, τ
⋆
ev) ~f (~x⋆(i− j + 1), ~u(ti−j+1), ~p

⋆)

)

= ~0, and (22)

gev(τ
⋆
ev, ~x

⋆(τ⋆
ev), ~p

⋆) = 0. (23)

These equations are similar to Eq. (2). But here, we treat both the next

time-point τ⋆
ev and the next DAE state ~x⋆(τ⋆

ev) as unknowns. So, the α and β

coefficients become functions of the unknowns as well. Also, we use LMS

approximations to calculate the ~̇x
⋆
(τ⋆

ev) term in Eqs. (19) and (20).

Finally, the sensitivity of our event-driven objective function is given by:

Sφ = J
⋆
hp +

M∑

ev=1

(
J
⋆
hτev

Sτev + J
⋆
hx(τev)Sxev

)
. (24)

J. Augmenting the sensitivity DAG for event-driven objective functions

Fig. 6 shows the steps involved in adding an event-driven objective

function to the sensitivity DAG. For each event 1 ≤ ev ≤ M , we add three

new nodes to the DAG (Fig. 6a): a partial ~x⋆(τ⋆
ev) node whose sensitivity

equals Sx(τ
⋆
ev) (which is created just like any other node in the transient

simulation, following §II-D), and nodes corresponding to τ⋆
ev and ~x⋆(τ⋆

ev),
which are created according to Eqs. (19) and (20) respectively. The edges

associated with these nodes, and their weights, are shown in Fig. 6a.

Finally, a single new node ~φ⋆ is added to the DAG to capture the event-

driven objective function. As shown in Fig. 6b, this node has incoming edges

from ~p ⋆, as well as from all the τ⋆
ev and ~x⋆(τ⋆

ev) nodes added above. The

weights of these edges, as shown in the figure, follow Eq. (24).

K. DAGSENS: The overall flow for event-driven objective functions

Based on the preceding sections, Algorithm 3 outlines the overall flow

that DAGSENS uses for computing direct and adjoint sensitivities of event-

driven objective functions.

(b)

Nodes 
already 
present

New nodes added

Weight calculated 
using Eq. (8)

Weights calculated 
using Eq. (9)

(a)

Fig. 6. (a) Adding events, and (b) adding an event-driven objective function, to the
sensitivity DAG.

Algorithm 3: Event-driven sensitivity analysis in DAGSENS

Input: A DAE D in the form of Eq. (1), nominal DAE parameters ~p ⋆,

DAE inputs ~u(t) over an interval [t0, tf ], events 1 ≤ ev ≤ M

in the form of Eq. (17), and an event-driven objective function

φ in the form of Eq. (18)

Output: The sensitivity of the objective function with respect to the

DAE parameters, evaluated at ~p ⋆

1 Do a transient analysis of D, using parameters ~p ⋆, with inputs ~u(t),
over the time-interval [t0, tf ].

2 Record Jacobians J⋆
qx(t), J

⋆
qp(t), J

⋆
fx(t), and J⋆

fp(t) from the transient

simulation.

3 Build a sensitivity DAG G, using information from the transient run

and the Jacobians above, via Eqs. (7), (8), and (9).

4 for 1 ≤ ev ≤ M do

5 Solve for event ev, i.e., find τ⋆
ev and ~x⋆(τ⋆

ev), by constructing and

solving Eqs. (22) and (23).

6 Augment the sensitivity DAG with nodes corresponding to ev, as

outlined in §II-J.

7 Augment the sensitivity DAG with a φ node, as outlined in §II-J.

8 Traverse the sensitivity DAG using either Algorithm 1 (for direct

sensitivities), or Algorithm 2 (for adjoint sensitivities).

9 Return the sensitivities computed above.

III. RESULTS

We have developed a Python implementation of DAGSENS, which we

now apply to compute event-driven sensitivities in some electronic and

biological applications, including high-speed communication, statistical cell

library characterization, and gene expression in Drosophila embryos.

A. High-speed communications sub-systems

1) A “maximum crosstalk” example: In modern high-speed I/O links,

“crosstalk” between parallel channels (e.g., those found in a CPU/DRAM

interface) often adversely impacts bandwidth [27]–[29]. When two signal-

carrying lines are physically close to one another on-chip, the bits transported

in one of the lines (the aggressor) often interfere with those in the other line

(the victim), via cross-coupled capacitances [27]–[29].

Fig. 7 (a) shows the circuit that we designed to tease out the impact of

such crosstalk. The aggressor and victim are both modelled as RC chains

driving capacitive loads. The circuit consists of two sub-circuits: the one on

the right where crosstalk is modelled via cross-coupled capacitances, and
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Fig. 7. (a) The circuit used to determine the magnitude of crosstalk induced by the aggressor line on the victim line in our I/O link. (b, c) Transient simulation of the circuit
in (a) without and with pre/de-emphasis respectively, with the event corresponding to maximum crosstalk in each case. (d through i) Sensitivity of the maximum crosstalk
induced by the aggressor line on the victim line, with respect to each segment resistance (d, e), each segment capacitance (f, g), and each cross-coupling capacitance (h, i)
along the I/O link, without (d, f, h) and with (e, g, i) pre/de-emphasis.

Parameter
Without

Pre/De-Emphasis
With

Pre/De-Emphasis
% impact of

Pre/De-Emphasis

φ (V ) 0.1183 0.1372 15.98%

Sens(φ)

Total Rseg (kΩ) 0.6611 0.5219 −21.06%
Total Cseg (pF) 0.7770 0.7851 1.04%
Total Ccross (pF) 3.9643 4.7049 18.68%
Cload (pF) 4.0547 4.7960 18.28%

Table 2. The impact of using pre/de-emphasis on the sensitivities of maximum
crosstalk (φ), with respect to total segment resistance, total segment capacitance, as
well as load parameters.

the one on the left without crosstalk. The difference between the victim’s

outputs in these two sub-circuits is a measure of crosstalk (Fig. 7a).

Our “event of interest” is when the crosstalk reaches its maximum value

during a transient run. And our event-driven objective function φ is the value

of this maximum crosstalk. Parts (b) and (c) of Fig. 7 depict these events

during the course of the transient simulation, where the aggressor and victim

lines transmit their bits without and with pre/de-emphasis respectively. While

pre/de-emphasis is a good strategy for boosting bandwidth by improving

signal integrity at the receiver end, it can have the drawback of increasing

crosstalk [27]–[29].

Parts (d) to (i) of Fig. 7 show the results of applying DAGSENS to this

system above, where the sensitivities of the maximum crosstalk with respect

to each segment resistance, segment capacitance, and segment coupling

capacitance are plotted as bar charts. In particular, it is interesting to see

(parts d, e) that the maximum crosstalk is much more sensitive to the first few

segment resistances when pre/de-emphasis is employed. Also, it is interesting

to see that the sensitivities with respect to the segment capacitances rise in a

convex manner (parts f, g), while those with respect to coupling capacitances

rise in a concave manner (parts h, i). Table 2 shows the precise impact

of using pre/de-emphasis on maximum crosstalk sensitivities with respect

to various system and load parameters. Thus, event-driven DAGSENS can

allow high-speed link engineers to obtain various insights that would not be

possible with existing sensitivity analysis tools.

Since our objective function has dimension 1, as opposed to the DAE

N tdir tadj Adj. speedup

1 2.50 s 2.09 s 1.19
5 5.39 s 4.21 s 1.28

10 9.03 s 6.83 s 1.32
20 16.47 s 12.13 s 1.36
50 38.98 s 27.74 s 1.41

100 1.32 mins 53.92 s 1.47
200 2.92 mins 1.77 mins 1.66
500 10.37 mins 4.41 mins 2.35

1000 1.33 hours 9.03 mins 8.81
2000 6.06 hours 18.27 mins 19.90

5000 Out of memory
after > 27 hours

46.11 mins > 35

10000 Did not try 1.55 hours N/A

Table 3. Adjoint sensitivity analysis carries powerful advantages over direct sensitivity
analysis when the dimension of the objective function is much smaller than that of
the DAE parameter space.

parameter space that has a dimension O(3N), where N is the number

of RC segments, this is also a good test case to illustrate the benefits of

adjoint over direct sensitivity analysis. Table 3 illustrates this by showing the

speedups achieved by adjoint DAGSENS over direct DAGSENS for various

N : as N increases, these speedups become more impressive. We note that,

at present, DAGSENS is a proof-of-concept code written in Python rather

than production code written in a language like C or C++. In particular,

efficient garbage collection and memory management techniques have not

been implemented in DAGSENS yet, which is why the program can run out

of memory relatively easily. We plan to address these issues in the future

(§IV), but we believe that the benefits of adjoint analysis over direct analysis

are still clear from Table 3.

2) A PLL example: PLLs are widely used in high-speed commu-

nication sub-systems for frequency synthesis, clock and data recovery

(CDR), etc. [27], [30], [31]. The lock time of a PLL, i.e., how quickly

the PLL can lock to a new input frequency, is of critical importance in these

applications. Since a PLL achieving lock is a transient event, we can use

DAGSENS to calculate the sensivities of a PLL’s lock time with respect to

its parameters.



Fig. 8. (a) Block diagram of a PLL, with the underlying equations, (b, c) Transient simulation of low-bandwidth (b) and high-bandwidth (c) PLLs on an input waveform
that abruptly changes frequency at t = 50ns. The high-bandwidth PLL regains lock more quickly, but features a larger peak-to-peak swing in Vctl around its ideal DC value.

Low Bandwidth
(fc = 0.11GHz)

Loop Filter

High Bandwidth
(fc = 0.45GHz)

Loop Filter

Parameter
Lock

time (ns)
Vctl swing

(mV)
Lock

time (ns)
Vctl swing

(mV)

φ 14.85 45.41 1.68 182.94

Sens(φ)

KPFD (V −1) −1.59 45.76 −0.07 188.67
R (kΩ) 1.21 −32.61 0.13 −259.66
C (pF) 1.69 −45.65 0.18 −363.53
KVCO (V −1GHz) −5.29 0.35 −0.39 5.72
fVCO (GHz) −18.48 −0.07 −1.09 0.93

Table 4. Sensitivities of PLL lock times and peak-to-peak Vctl swings when locked,
with respect to various macromodel parameters, for both low and high bandwidth loop
filters.

Fig. 8 (a) shows a high-level block-diagram for a PLL, and also the

equations and parameters associated with each PLL component [30], [31].

Parts (b) and (c) of Fig. 8 show transient simulations of two different PLLs,

one (b) with a low-bandwidth loop filter and the other (c) with a high-

bandwidth loop filter. In each case, the input waveform abruptly switches its

frequency at t = 50ns, throwing the PLLs off-lock. The PLLs then eventually

regain lock, as can be seen from the red bars that graph the time elapsed

between the peaks of Vin (the PLL input) and the nearest peaks of Vout

(the PLL output) in each case. Our event-driven objective functions are the

respective PLL lock times, defined as the time taken for the respective Vctl

waveforms to settle into a narrow range around their final expected values.

The peak-to-peak swing in Vctl is also an objective function of interest; if

one used an ideal loop filter, Vctl would settle to a DC value, so this swing in

Vctl is a measure of non-ideality in the PLL’s response. While we would like

PLLs to lock quickly and have small Vctl swings, there is often a tradeoff

between these metrics: high (low) bandwidth PLLs lock quickly (slowly),

but exhibit larger (smaller) Vctl swings, as shown in parts (b) and (c) of

Fig. 8.

Table 4 shows the sensitivities of both the event-driven objective functions

above (PLL lock times as well as Vctl swings at lock), with respect to the

PLL macromodel parameters shown in Fig. 8 (a). From the table, it is clear

that when a high (low) bandwidth loop filter is used in the PLL, both the

lock time and its sensitivities tend to be lower (higher), whereas both the

Vctl swing at lock and its sensitivities tend to be higher (lower).

B. Statistical cell library characterization

As we approach the age of 7 nm CMOS and near/sub-threshold computing,

statistical characterization of cell libraries for digital design, taking into

account the sensitivities of important performance metrics like timing and

power consumption, with respect to parameter variability, is crucial [12],

[32], [33].
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Fig. 9. A CMOS NAND gate driving an RC load.

We now use DAGSENS to calculate the sensitivities of one such event-

driven metric, namely, the 20% to 80% transition delay, of a 22 nm CMOS

NAND gate driving an RC load (Fig. 9), to various NMOS, PMOS, and

load parameters.

Fig. 10. Transient simulation of the CMOS NAND gate of Fig. 9 for two different
input transitions, showing the 20% and 80% “transition complete” events, and the
corresponding “delay” objective function in each case.

Fig. 10 shows 2 transitions of the NAND gate above; although there are

6 possible transitions that switch the output, we show only 2 due to space

constraints, although we analyze the sensitivities of all 6 in Table 5 below.

Fig. 10 also shows the ”20% complete” and “80% complete” events in each

case, as well as our event-driven gate delay objective function, i.e., the time

elapsed between these two events.

Table 5 shows the event-driven sensitivities of the NAND gate delay to



Parameter Pull down transitions Pull up transitions

Input transition (A, B) (0, 0) → (1, 1) (0, 1) → (1, 1) (1, 0) → (1, 1) (1, 1) → (1, 0) (1, 1) → (0, 1) (1, 1) → (0, 0)

φ (ps) 292.70 292.89 292.85 302.92 293.93 147.38

Sens(φ)
wrt PMOS
parameters

W (nm) 7.87× 10−6 3.37× 10−5 2.11× 10−5
−4.96 −4.77 −2.37

L (nm) −2.36× 10−5
−1.01× 10−4

−6.32× 10−5 14.87 14.31 7.12
Vth (V ) 8.66× 10−4 3.71× 10−3 2.32× 10−3

−904.66 −867.64 −431.64
Rd (kΩ) 9.93× 10−4 9.78× 10−4 9.81× 10−4 0.68 0.66 0.31
Rs (kΩ) −3.75× 10−6

−1.79× 10−5
−1.11× 10−5 2.88 2.76 1.38

Rds (GΩ) −0.15 −0.15 −0.15 0.15 0.14 0.04
Cgd (fF) 572.50 560.58 562.92 625.30 620.19 326.68
Cgs (fF) 3.05× 10−7 1.65× 10−7 1.73× 10−7 5.24× 10−3 5.10× 10−3 4.69× 10−3

Cdb (fF) 542.01 544.03 545.59 576.72 573.06 283.58
Csb (fF) 5.42× 10−14 5.72× 10−14 5.14× 10−14 4.96× 10−7 4.94× 10−7 5.04× 10−7

Sens(φ)
wrt NMOS
parameters

W (nm) −6.79 −6.80 −6.82 1.32× 10−3 2.77× 10−4
−2.81× 10−3

L (nm) 13.59 13.61 13.65 −2.65× 10−3
−5.54× 10−4 5.62× 10−3

Vth (V ) 813.20 814.42 816.31 −25.84 −0.02 −0.72
Rd (kΩ) 2.53 2.54 2.54 7.86× 10−3 3.31× 10−4 5.18× 10−4

Rs (kΩ) 4.51 4.50 4.52 5.73× 10−4
−2.04× 10−4

−4.64× 10−5

Rds (GΩ) 0.03 0.03 0.03 −0.06 −0.08 −0.02
Cgd (fF) 321.58 311.81 310.31 510.84 333.66 174.65
Cgs (fF) 35.36 32.44 28.97 173.82 2.34× 10−3 11.30
Cdb (fF) 298.82 295.27 301.73 462.18 286.53 141.53
Csb (fF) 27.84 23.28 28.97 173.82 6.84× 10−5

−0.27

Sens(φ) wrt
load parameters

Rload (kΩ) 0.57 0.57 0.57 0.54 0.59 0.59
Cload (fF) 272.14 273.15 273.93 289.45 287.71 142.98

Table 5. NAND gate delay sensitivities with respect to various NMOS, PMOS, and load parameters, for all input transitions that switch the output.

various NMOS and PMOS parameters (including widths, lengths, threshold

voltages, parasitic resistances and capacitances, etc.), as well as load pa-

rameters. It is interesting to see that, in most cases (although not all), the

gate delay is more sensitive to PMOS (NMOS) parameters during “pull up”

(“pull down”) transitions, as one would intuitively expect. Thus, DAGSENS

can be useful for finding parametric sensitivies of important timing-related

event-driven objective functions for statistical cell library characterization.

C. Biological applications

We now apply DAGSENS to compute event-driven parametric sensitivities

in a biological example, i.e., gene expression via transcription, translation,

decay, and diffusion in Drosophila embryos (Fig. 11, [34], [35]).
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Fig. 11. A model for gene expression in a Drosophila embryo, featuring transcription,
translation, and decay (part a), as well as diffusion across nuclei (part b).

The system consists of a Drosophila gene that generates mRNA molecules

via transcription, which in turn generates protein molecules via translation.

In parallel, the mRNA and protein molecules also decay. This is all shown in

Fig. 11 (a) [34], [35]. Somewhat complicating the process, these reactions

take place in a linear chain of sites (called nuclei), and whenever there

is an mRNA/protein concentration difference between two adjacent nuclei,

mRNA/protein molecules flow across nuclei to balance the gap [34], [35].

In this example, we have N = 52 nuclei, and each nuclus i (where

1 ≤ i ≤ N ) has an mRNA concentration (denoted [mRNA]i) and a protein

concentration (denoted [protein]i). The system has a single exponentially

decaying external input u(t) that governs the rate of transcription. The

differential-equation model for the system is:

d

dt
[mRNA]i = σmRNAu(t)

︸ ︷︷ ︸

Transcription

+ dmRNA([mRNA]i−1 − [mRNA]i)
︸ ︷︷ ︸

Diffusion from previous nucleus

+ dmRNA([mRNA]i+1 − [mRNA]i)
︸ ︷︷ ︸

Diffusion from next nucleus

−λmRNA[mRNA]i
︸ ︷︷ ︸

Decay

, and (25)

d

dt
[protein]i = σprotein[mRNA]i

︸ ︷︷ ︸

Translation

+ dprotein([protein]i−1 − [protein]i)
︸ ︷︷ ︸

Diffusion from previous nucleus

+ dprotein([protein]i+1 − [protein]i)
︸ ︷︷ ︸

Diffusion from next nucleus

−λprotein[protein]i
︸ ︷︷ ︸

Decay

, (26)

with the understanding that the “diffusion from previous nucleus” and

“diffusion from next nucleus” terms are 0 for the first (i = 1) and last

(i = N ) respectively.

Each nucleus features a maximum [mRNA] event

(a)

Each nucleus features a maximum [protein] event

(b)

Fig. 12. Transient simulation of gene expression in a Drosophila embryo.

Fig. 12 shows a transient run of the system above. As the figure shows,

at each nucleus i, there comes a time when [mRNA]i reaches its maximum

value (before mRNA decay begins to take its toll), and a (slightly later)

time when [protein]i reaches its maximum value (before protein decay takes

its toll). These “maximum concentration” events are of interest in many

gene expression systems, and so we set the times of these events, and

the corresponding maximum concentration values, to be our event-driven

objective functions.

Fig. 13 shows a plot of these event-driven sensitivities, across nuclei,

with respect to various system parameters. It is interesting to see that,

while the peak mRNA and protein event times, as well as the peak mRNA

concentration value, are all most sensitive to the mRNA decay constant

λmRNA, the peak protein concentration value is most sensitive to the protein

translation constant σprotein, for all the nuclei.



Fig. 13. Sensitivities of peak mRNA and protein concentrations, as well as the times
at which these peak concentrations occur, across nuclei, for the Drosophila embryo
gene expression system.

IV. SUMMARY, CONCLUSIONS, AND FUTURE WORK

To summarise, we have developed and demonstrated DAGSENS, a simple,

elegant, and powerful theory for transient sensitivity analysis based on

directed acyclic graphs. We have also shown how DAGSENS can be applied

to carry out direct and adjoint transient sensitivity analysis of an entirely

new kind of objective function defined based on events that happen during

a transient simulation. We have demonstrated this on several real-world

applications including high-speed communication, statistical cell library

characterization, and gene expression in biological systems.

In future, we would like to significantly improve the DAGSENS code-

base, for better CPU and memory performance; in particular, we would like

to migrate DAGSENS from a proof-of-concept Python implementation to

a production-level C++ implementation in the open-source circuit simulator

Xyce [15]. We believe that this would enable us to run DAGSENS on much

larger examples than we can at present.
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