DAGSENS: Directed Acyclic Graph Based

SAND2017-4319C

Direct and Adjoint Transient Sensitivity Analysis
for Event-Driven Objective Functions

Abstract—We present DAGSENS, a new theory for transient sensitivity analysis
of Differential Algebraic Equation systems (DAEs), such as SPICE-level circuit
equations. The key ideas behind DAGSENS are, (1) to represent the entire
sequence of computations, starting from DAE parameters, all the way up to
the objective function whose sensitivity we need to compute, as a Directed
Acyclic Graph (DAG) called the ‘“sensitivity DAG”, and (2) to compute the
required sensitivites efficiently (with time complexity linear in the size of the
sensitivity DAG) by leveraging dynamic programming techniques to traverse
the DAG. DAGSENS is simple, elegant, and easy-to-understand compared to
existing sensitivity analysis approaches: for example, in DAGSENS, one can
switch between direct and adjoint transient sensitivities just by changing the
direction of DAG traversal (i.e., topological order vs. reverse topological order).
Also, DAGSENS is significantly more powerful than existing sensitivity analysis
approaches because it allows one to compute the sensitivities of a much more
general class of objective functions, including those defined based on “events”
that occur during a transient simulation (e.g., a node voltage crossing a particular
threshold, a phase-locked loop (PLL) achieving lock, a signal reaching its
maximum/minimum value during the simulation, efc.). In this paper, we apply
DAGSENS to compute the sensitivities of important event-driven performance
metrics in several real-world electronic and biological applications, including
high-speed communication (featuring sub-systems such as I/O links and PLLs),
standard cell characterization, and gene expression in Drosophila embryos.

I. INTRODUCTION

This paper is about a new flexible and elegant approach to computing
transient parameter sensitivities. In recent years there has been a lot of
interest in transient sensitivity analysis for large-scale dynamical systems,
represented by linear/nonlinear differential-algebraic equations (DAEs) or
partial differential equations (PDEs). Within engineering and scientific
communities, it is well understood that performance sensitivities with respect
to model parameters or system input excitations are valuable for a variety of
purposes, including design optimization [1], uncertainty quantification [2],
stability analysis [3] and transient global error control [4].

In the field of integrated circuit design, transient sensitivities have his-
torically been very important [5], [6]. Specific circuit design applications
of transient adjoint parametric sensitivities have included automated circuit
tuning [7] and yield estimation [8], among others. The importance of
sensitivites in circuit design is likely to increase, particularly with the move
to progressively smaller process nodes. As the industry approaches the 14nm
and 7nm technology nodes, parameter variability is becoming ever more
pronounced, due to less control over the manufacturing process.

In general, there are two types of sensitivity algorithms: direct sensitivities
and adjoint sensitivities. Direct methods [6] are relatively easy to understand
and to implement, but scale poorly for problems with large numbers of
parameters. Adjoint methods [3], [9]-[13] are generally harder to understand
and implement, and have thus received much more recent attention in
the literature. Unlike direct methods, they scale very well to very large
numbers of parameters. Modern simulation problems can frequently consist
of millions, or even billions of degrees of freedom, and a similarly large
number of input parameters of interest. For such problems, computing
sensitivities can only be practically accomplished using an adjoint method.

Despite the long history and continued importance, transient adjoint
methods are often not well understood. Previous descriptions have lacked
generality, and it has been unclear how to apply adjoint methods efficiently to
many common objective functions of interest. Many papers, particularly early
ones [5], [7] have been based around the construction of an “adjoint circuit”.
Most recent papers are based around a more mathematical description, but
have restricted themselves to the sensitivity of solution variables at specific
points in time [9], [11], or integrals with respect to time of the solution [10],
[13]. Throughout this paper, we describe such objective functions as “final
point” and “integral” objective functions, respectively.

In practice, such objective functions are often inadequate, as objectives
of interest often don’t directly correspond to either a “final point” or an
“integral” style of function. Circuit designers frequently make use of metrics

we describe as “event-driven” objectives. Such objectives are defined as the
point in time at which a particular event happens. Examples include when
a signal exceeds a user-specified value, or possibly reaches a maximum
value. For a more complicated example, the objective function could be the
amount of time it takes for a PLL to lock to a new input frequency. The
“achievement of lock™ is a transient event, and so the “time to lock” is an
event-driven objective function. If the PLL parameters change, so does the
time to lock (as well as the state of the PLL when lock is finally achieved).
These types of objectives are common in circuit analysis, and are exemplified
by the .MEASURE feature that is found in popular circuit simulators such
as HSPICE [14] and Xyce [15].

In this paper, we develop DAGSENS, a new theory for transient sensitivity
analysis based on directed acyclic graphs (DAGs), related to some of the
ideas found in the automatic differentiation literature [16], [17]. In this
approach, each computation and intermediate quantity is represented in a
DAG, starting from the parameters all the way to the objective function.
Once such a DAG is constructed, required sensitivities can be obtained by
traversing it. A key advantage is the simplicity and elegance of the DAG
approach: switching from a direct approach to an adjoint approach is as
simple as switching the direction of DAG traversal from forward topological
order to reverse topological order We also define and develop the notion of
event-driven transient sensitivity analysis, where the objective function is
defined based on events that happen during a transient run. We show how
the DAG formulation can enable straightforward extension for computing
direct and adjoint sensitivities of event-driven objective functions.

The remainder of this paper is organized as follows. In sections §II, general
background related to the solution of DAEs and sensitivity analysis are
presented. In sections §II-D a description of the DAG theory of sensitivity
analysis is described. In section §II-I the extension of this method to event-
based objective functions is discribed. Results for several representative
circuit problems and also a biological example are given in section §III.

II. CORE TECHNIQUES AND ALGORITHMS FOR DAG-BASED
EVENT-DRIVEN SENSITIVITY ANALYSIS

We now discuss the key ideas and core concepts behind DAGSENS.

A. DAE models of dynamical systems

Throughout this paper, we assume that the system we wish to analyze is
a DAE of the form:

L0, 9) + [E0), 1(0),5) = 0, M)

where T is the system’s state vector (e.g., a list of voltages and currents), p' is
a vector of parameters with respect to which we wish to compute sensitivities
(e.g., transistor widths and lengths, parasitic resistances and capacitances), @
is a vector of inputs to the system, and ¢ denotes time. We note that Eq. (1)
is capable of modelling virtually any electronic circuit at the SPICE level,
and many biological systems as well [18]-[20].

B. Transient analysis of DAEs

Given an initial condition #(to) = Zo, and time-varying inputs (t) to
the DAE of Eq. (1), transient analysis refers to the problem of solving
for the time-varying DAE state Z(t) over a time-interval [to, ¢s]. This is
accomplished by discretizing time into a sequence {to, t1, ..., tn—1}
(where tnx—1 = ty), and then approximating the respective DAE states
{Zo, #1, ..., Tn—1} by solving a sequence of “Linear Multi-Step” (LMS)
equations of the form [18], [19], [21], [22]:

m;

> (ail=3) @@y)+ Bi(—3) [@imyy ltiy), 7)) = 0. @)

j=0

Method m; Coefficient j=2 j=1 ji=
1 1
FE 1 ai(~J) B ti—ti_1 ti—ti_1
Bi(—3) - 1 0
. 1 1
BE 1 ai(=4) B T ti—tioa ti—ti—1
Bi(—4) - 0 1
: 1 1
TRAP 1 ai(=J) - fimti Gi—tia
Bi(=4) - 0.5 0.5
1 1 1
ti—1—ti—2 ti—t;— ti—t;
Oéi(*]) i—1 1 2 ih 1 il 1
GEARZ 2 T ti—tia ti—1—ti—2 +iq—ti72
Bi(—7) 0 0 1
Table 1. Coefficients used by several common LMS methods in Eq. (2).

Thus, at each step ¢ (where 1 < ¢ < N — 1), one solves Eq. (2) (using
techniques like Newton-Raphson iteration, homotopy, etc.) to determine &,
based on m; previously calculated & values (from earlier steps). Table 1 lists
the o and B coefficients used by several common LMS methods, including
Forward Euler (FE), Backward Euler (BE), Trapezoidal (TRAP), and second-
order Gear (GEAR2), in the construction of Eq. (2) [18], [21], [23], [24].

C. Transient sensitivity analysis of DAEs

Suppose we have a DAE in the form of Eq. (1), with parameters p™*,
and transient solution £*(¢) over the interval [to,t]. The question behind
transient sensitivity analysis is: if we perturb the parameters slightly, how
will the transient solution change?

More precisely, suppose we change the parameters from p™ to p™ + Ap.
As a result, let us say that the transient solution changes from Z*(t) to
Z*(t) + AZ(t). The question is: what is the relationship between AZ(t) and
Ap in the limit as AF — (2 The answer, which is obtained by doing a
perturbation analysis of Eq. (1), is given by [9]-[11]:

AZ(t) = Sz (t)Ap, where 3)
d * * * *
G U 08:00) + 3y (0) | + [50S4 T3] = O
(C))
The J terms in Eq. (4) denote nominal time-varying Jacobians, i.e.,
* aff * A aq*
qu(t) 2 a7) Jqp(t) = 3>)
O | zu(r), o OP | (4, 5+
RO cand 5,0 2 2L)
FH(L), w(t), p* ZX(t), @(t), p*

Since AZ(t) is obtained by multiplying S, (¢) with Ap (Eq. 3), Sz (t) is
called the sensitiviry of the solution #(¢) with respect to the parameters p,
evaluated at p*. And Eq. (4), a matrix-valued DAE that tracks the evolution
of the |Z*| x |p™| matrix S;(¢) over time, is called the “sensitivity DAE”.

Note that the sensitivity DAE does not directly give us an expression for
S (t). Rather, it needs to be solved for S, (t). The “direct” approach for this
involves two rounds of transient analysis. In the first round, the original DAE
(Eq. 1) is solved using the LMS techniques of §II-B. This yields a sequence
of discretized time-points {¢;} (where 0 <7 < N — 1 and tn—1 = ty), as
well as a corresponding sequence of DAE states {Z*(7)} (§II-B). These, in
turn, are used to compute the sequences of Jacobians {.J;, (i)}, {J;,(4)},
{T5.(0)}, and {J},()}.

In the second round, the sensitivity DAE (Eq. 4) is solved using the same
LMS techniques, and the same sequence of LMS methods (FE, BE, etc.) used
for the first round. The LMS equations that are solved (similar to Eq. 2) are:

3 {ai(—j) e =)86 =) + Jip i =)]
j=0
+Bi(=3) [Jfu(i = 5)Su(i = j) + Jfp(i = 5)] | = Op+ix|p+|, (6)

where the o and (3 coefficients, as before, are looked up from Table 1.

Solving the LMS equations above yields the required sensitivities Sz (%)
for 0 < ¢ < N, discretized over the time-interval [to,¢s]. Note that the
initial condition S;(0) (which is the sensitivity of the initial DAE state
Z%(0)) needs to be specified to start the chain of LMS solves above; in
practice, this is usually found by DC sensitivity analysis [10], [18].

D. The sensitivity DAG

Each step of the transient analysis of §II-B builds on previously computed
DAE state vectors, to solve for a new DAE state vector. This sequence of
computations fits naturally into a Directed Acyclic Graph (DAG) structure,
as shown in Fig. 1.

w(@(0), 77(2))

w(p”, £7(2))

Fig. 1. The DAG structure underlying a transient simulation.

The nodes of the “sensitivity DAG” in Fig. 1 represent the quantities that
are computed during the transient simulation, and are labelled as such. The
edges represent dependencies amongst these quantities. For example, Fig. 1
assumes that the initial condition Z*(0) is computed from p™* (e.g., via DC
analysis [18], [19]); so, there is an edge that leads from the §* node to the
Z*(0) node. Similarly, £*(1) is assumed to be computed from Z*(0) and
P by solving Eq. (2), using an LMS method with memory m1 = 1, such
as FE, BE, or TRAP (Table 1). So, there are edges leading from both the
P node and the £*(0) node to the Z*(1) node. Finally, £*(2) is assumed
to be computed via an LMS method like GEAR2 that has memory ma = 2
(Table 1). Therefore, when Eq. (2) is solved to determine Z*(2), both Z*(0)
and Z*(1), as well as p'*, are used in the computation. So, there are edges
leading from all these three nodes to the Z*(2) node.

While Fig. 1 stops at £*(2) for lack of space, it is easy to see that the
ideas behind the DAG construction can be extended to the entire length of
the transient simulation. In general, if the transient simulation has N points
with indices 0 < ¢ < N — 1, the corresponding sensitivity DAG will have
N + 1 nodes (one for p*, and one for each Z*(z)). The Z*(0) node will
have exactly one incoming edge, which will originate at the ™ node. For
all other *(i), the number of incoming edges will be 1+ m;, where m; is
the memory of the LMS method used to compute Z*(¢) via Eq. (2). One of
these edges will originate at the p* node, while the others will originate at
the m; nodes prior to £*(2), i.e., the nodes (i — j) for 1 < j < m,.

Also, each edge of the sensitivity DAG has a weight, as shown in Fig. 1.
The weight of an edge from node u to node v, denoted w(u,v), is equal
to the partial derivative (or sensitivity) of v with respect to w; it measures
how much a small perturbation in w will affect the value of v. The weight
w(p™, £*(0)) is obtained by doing a DC perturbation analysis of Eq. (1) [18],
while all other weights are obtained by doing a perturbation analysis of
Eq. (2):

w(”, 7°0) = 2 = 75,071 5,(0),)
w(p*, 2Xi)) = %:(f) = — {ai(O)ng (1) + 51(0)]}}(2)] B
[Z (ai<—j>Jsp<z‘)4 BT i — j))] ,
V1<i<N-—-1, and ()

w(@(i - 5), #°6)) = % _ {ai(O)J;z(i) + ﬂi(O)J}*z(i)] i

V1i<i<N-1,1<j<m. ©))

E. Objective functions and the sensitivity DAG

As mentioned in §I, in many applications, we are not directly interested
in the sensitivities of the solution Z*(¢), but would like to compute the
sensitivities of important transient performance metrics (i.e., “objective
functions™) derived from Z*(t) (and denoted #* in this paper). Below, we
discuss two kinds of objective functions commonly found in the sensitivity
analysis literature (“final point” and “integral” objective functions), and show
how to incorporate these into the sensitivity DAG. Later (§II-H, §II-1, §II-J),
we will do the same for “event-driven” objective functions, a powerful new
class of objective functions nor found in the existing literature.

Final point objective functions. These take the form:

¢ = h(z
where Z*(N — 1) is the final point in the transient simulation.

Therefore, the sensitivity S, of such an objective function, evaluated at
p’*, is given by:

(N —=1),57), (10)

S = Jpe(N —1)S (N — 1) + J;, (N — 1), (11)

where the Jacobian symbols have their usual meanings.

w(#*(0), #(2))

Jhe(N —1)

Jip(N = 1)

Fig. 2. Adding a final point objective function to the sensitivity DAG of Fig. 1.

To include such an objective function in the sensitivity DAG, we add a
new node ¢* to the DAG, with two incoming edges: one from p™* with

weight J;,(N —1), and one from Z*(N — 1) with weight J;;, (N —1). This
is illustrated in Fig. 2 for the simple case N = 3.
Integral objective functions. These take the form:
- o,
¢ = / h(t, (1), p7) dt. (12)
t=to
Therefore, we have:
tf * *
S, = / (T (D)Sa () + Jip () . (13)
t=to

In practice, the integral in Eq. (13) is approximated by a summation:

(1) + Jhp(3)) (titr —)] - (14)

w(@(0), ¢)

w(p”, &)

Fig. 3. Adding an integral objective function to the sensitivity DAG of Fig. 1.

To include such an objective function in the sensitivity DAG, we add a
new node d_;* to the DAG, with N incoming edges: one from p™, and the
rest from Z*(¢), where 0 < ¢ < N —2 (i.e., from every point in the transient
simulation except the last). The weights of these edges are:

N—

l\.’)

Z Jhp(@)(tis1 — t3)) , and (15)
i=0
w(Z*(3), ¢%) = Jip(i)(tig1 — i), VO<i < N — 2. (16)

This is illustrated in Fig. 3 for the simple case N = 3.

With the introduction of a node representing the objective function,
the sensitivity DAG is “complete”: it now accurately represents all the
intermediate computations involved in calculating the objective function
starting from the DAE parameters. Moreover, the partial sensitivities of these
computations are also available from the DAG’s edge-weights. Thus, we now
have all the information needed to do an end-to-end sensitivity analysis.

F. Sensitivity analysis = DAG path enumeration

97*(2)
977(0)

0L*(2)

o5

Fig. 4. The DAG of Fig. 2, with edge-weights denoted by partial derivatives.

Our goal is to compute the sensitivity of the objective function d_; with
respect to the DAE parameters p, evaluated at p*. Let us take a closer look
at this computation, through an example. Fig. 4 shows the sensitivity DAG
for a 3-step transient simulation and a final point objective function. Indeed,
this is the same DAG derived in Fig. 2, except that the notation for the
edge-weights has been changed to make it clear that the edge-weights are,
in fact, partial derivatives. Now, let us repeatedly apply the chain rule to
find the sensitivity of the objective function:

Sensitivity _ dfﬁ; _ d¢* _ 96" + 96" di’(2)
we need dp| dp* op* 0T*(2) dp”*
P ,
Chain Rule Chain Rule
94" N o (0Z*(2) L 05°(2) dEX(1) | 03(2) di(0)
T opt | oFr(2)\ op” oz (1) dp™ OZ*0) dp”*
N—— N———
Chain Rule Chain Rule

26" | 0¢* <£)f*(2) 0r°(2) (02°(1) | 0*(1) di(0) , 0%
op” T oax)\ apr | o)\ op | 9Z0) dp”
N —

Chain Rule

7a$*+ 06 [0i*(2) 0F*(2) a:z*(1)+af (1) 95°(0)), 9E°(2) 9F7(0)
Topr Tar @\ opr oar()\ apr | ax(0) ap 9Z*(0) op*
_[08 0¢ 0w | 0§ 0i'(2)97()
R i2) Op" 77(2) 027 (1) 0p"
w-/
Path: 5* — ¢* Path: f*— F*(2)— ¢* Path: §* — F*(1) = F%(2)— ¢+
o6* 0T*(2) 9F*(1) 0F1(0) 8" OF*(2

(2) 02%(0)]
97 (2) 01°(1) 02 0) 0p° | 9z'(2) 02 (0) ap”

Path: 5% — &*(0)— Z*(1)— F*(2)— ¢* Path: §* — F+(0)— F*(2)— ¢*

m | m is a path from
p* to ¢* in the sensitivity DAG

<Pr0duct of edge-weights of 7 in reverse).

The derivation above shows that the sensitivity we want to compute is a
sum of terms, where each term corresponds to a unique path from p™ to
q?* in the sensitivity DAG; more precisely, each term is a “product of edge-
weights in reverse” of some path from p™ to (E*. Thus, we have a key insight:
solving the sensitivity analysis problem is the same as enumerating paths in
the sensitivity DAG. This holds true for all sensitivity analysis problems, but
we omit a rigorous proof due to space constraints.

Taking a cue from this, let us define the “weight of a path” in the sensitivity
DAG to be the product of weights of all the edges along the path, in reverse.
Also, given any two nodes u and v in the DAG, we define o(u,v) to be the

sum of the weights of all the paths in the DAG that start at v and end at
v. Thus, solving the sensitivity analysis problem is the same as computing

=

a(p™, ¢*) in the sensitivity DAG.

G. Direct and Adjoint approaches to DAG path enumeration

We just reduced sensitivity analysis to the problem of enumerating all
paths in the sensitivity DAG between p* and 6*, and adding up their weights.
The brute-force approach to this, however, is computationally infeasible
because the number of such paths grows exponentially as the size of the
DAG [25], [26]. Therefore, we leverage dynamic programming techniques
to efficiently enumerate DAG paths, and thus solve the sensitivity analysis
problem in linear time in the size of the sensitivity DAG [25], [26].

is an edge in the
sensitivity DAG

is an edge in the
sensitivity DAG

Adjoint sensitivity analysis: Optimal sub-structure for dynamic programming

Fig. 5. The key ideas behind efficient direct and adjoint DAG path enumeration in
DAGSENS.

Fig. 5 illustrates the key idea that we exploit, which is that the problem of
computing o (p, 5*) can be repeatedly broken down into smaller, simpler,
sub-problems. There are 2 ways to do this: (1) the “direct” approach (Fig. 5a),
where we keep the source p* constant, and express o (p” gz?*) in terms of
o(p™, u), where u is one step closer to p* than &*, or (2) the “adjoint”
approach (Fig. 5b), where we keep the destination qg* constant, and express
ao(p™, <z§*) in terms of o (v, <z§*) where v is one step closer to ¢* than 7.
Both approaches give us optimal sub-structures for dynamic programming,

as formalised in Algorithms 1 and 2 respectively.

Algorithm 1: Direct transient sensitivity analysis in DAGSENS

Input: The sensitivity DAG G, with nodes p* and <z§* representing the
DAE parameters and the objective function respectively
Output: The sensitivity o(p™, d_;*), calculated via dynamic
programming using the “direct” optimal sub-structure (Fig. 5a)

1o 0) = L+ x|

2 order = topological_sort(G)

3 for u in order do

4 | o(P% u) =0y x g+

for v such that (v, u) is an edge in G do
| 0@ u) += w(v,u) o5 v)

-

7 return o (p*, ¢*)

5
6

Algorithms 1 and 2 both compute a topological ordering, i.e., a permuta-
tion of the DAG nodes such that if (u, v) is a DAG edge, then u occurs
before v in the permutation [25], [26]. But while Algorithm 1 traverses the
nodes in topological order, Algorithm 2 traverses them in reverse topological
order. At every such node w (v), Algorithm 1 (2) computes o (5™ u)
(o(v, ¢*)), making use of the optimal sub-structure logic in Fig. 5a (5b).
This continues until, finally, the 5* (p™) node is reached, at which time the
computed o (p’*, 5*) is returned as the required sensitivity. Thus, while Al-
gorithm 1 involves computing the sensitivity of each intermediate DAG node
with respect to the DAE parameters, Algorithm 2 involves computing the
sensitivity of the objective function with respect to each intermediate DAG

Algorithm 2: Adjoint transient sensitivity analysis in DAGSENS

Input: The sensitivity DAG G, with nodes p* and 5* representing the
DAE parameters and the objective function respectively
Output: The sensitivity o (p™ gz?*), calculated via dynamic
programming using the “adjoint” optimal sub-structure
(Fig. 5b)
10(0% &) =L pxian
2 order = reversed(topological_sort(G))
3 for v in order do

4 o(v, 67) =05
for u such that (v, u) is an edge in G do

5
o | Lo) += alu ¢") wlv,u)

7 return o (P~ 5*)

node. So, the former (latter) implements direct (adjoint) sensitivity analysis
in DAGSENS [3], [9]-[13]. Indeed, Algorithm 2’s reverse order traversal
is equivalent to the idea of “integrating the sensitivity DAE backwards in
time” — the interpretation provided for adjoints in many sensitivity analysis
papers [9], [10], [13]. Also, there are strong parallels between direct/adjoint
DAG path enumeration in DAGSENS and forward/reverse mode automatic
differentiation [17].

Thus, just by changing the order in which the DAG is traversed,
DAGSENS allows one to switch between direct and adjoint sensitivity
analysis. We believe that this is a level of simplicity and elegance that is
lacking in existing sensitivity analysis approaches. Moreover, DAGSENS
works seamlessly for all LMS methods and easily allows the use of different
LMS methods for different transient time-steps — all without the need
for re-deriving the adjoint equations, specialized matrix structures, and/or
complicated backwards-in-time integration formulas for each different LMS
method. Also, we believe that due to its ease of understandability, DAGSENS
can make the benefits of sensitivity analysis accessible to a a much wider
audience, including device engineers, circuit designers, and students.

Finally, we would like to point out that Line 6 of Algorithm 2 involves
pre-multiplying the edge-weight w(v, u) by the matrix o(u, ¢*). Since
most edge-weights are of the form B~ 'C (Egs. 7, 8, and 9), this is a
computation of the form AB~'C, which can be done either as A(B~'C),
or as (CT((BT)7tAT))T (where matrix/matrix solves are sparse in many
applications of interest). If the number of rows of A is much smaller than
the number of columns of C' (i.e., the dimension of the objective function
is much smaller than that of the DAE parameter space), the latter is likely
to be much more efficient than the former, which we exploit heavily in
DAGSENS.

H. Event-driven objective functions

We now introduce a powerful new class of objective functions that have
not been addressed in the existing sensitivity analysis literature. The key
idea is that we would like to define “events” that happen during a transient
simulation (e.g., a node voltage crossing a particular threshold, a PLL in
a circuit achieving lock, a species in a chemical reaction network reaching
its maximum/minimum concentration), and then compute the sensitivities of
objective functions that depend on these events.

For our purposes, an “event” ev is specified by the condition:

gé’v(Tefzv i:*('ret)v ﬁ*) =0, amn

where 7, is the time at which the event occurs during a transient simulation.
In practice, we may need additional constraints to uniquely identify the event
(such as limits on 7y, or a specification such as “the third time Eq. (17) is
satisfied”, efc.). But for sensitivity analysis, we can ignore these additional
specifications because we only do perturbation analysis of Eq. (17) in a
small neighbourbood around 7.

Note that events corresponding to a signal reaching its maxi-
mum/minimum value are specified by adding a new DAE state variable
that represents the derivative of the signal in question, and by equating this
variable to zero via Eq. (17) (see §III for examples).

Given a sequence of M events 1 < ev < M, our event-driven objective
function takes the form:

& =h(ri, 75, ..., T, (), B(), ..., Z(a), BY). (18)

Thus, event-driven objective functions depend on the times of occurrence
of a set of events, as well as the DAE states at these times, both of which
change when the DAE parameters are perturbed. We would like to compute
the sensitivity of event-driven objective functions by taking into account both
these sets of changes.

1. Sensitivity analysis of event-driven objective functions

Let us denote by S-, and Sg,, where 1 < ev < M, the sensitivities
of our event times, and DAE states at these times, respectively. Note that
Sz, 7 Sz(7ey); while Sz (7.;) only takes into account the sensitivity of the
DAE state Z, Sy, takes into account the sensitivities of both the DAE state
Z and the event time 7,,. With this distinction in mind, perturbation analysis
of Eq. (17) yields:

J;(,vz SI (T(:’) + J;e\’p

S"'ev = - ok) and (19)
Jgpe® (18) + J30r
Spw = Su(18) + & (125)Sr, ¥ 1 < ev< M, where (20)
TRk d ok
P = —F(t 21
& (a) = Z7°@)| 2D

*
Tev

and where Jacobian terms have their usual meanings and are all evaluated at
(12, TX(7%), P*). Therefore, we first need to solve for the event, i.e., find
70, and Z*(7,,), before we can compute S, and S,,. We do this by finding
a time-point ¢; of the transient simulation where the ge (., ., .) function
undergoes a sign change between ¢; and t;41. We then use a modified LMS

strategy to solve for the event, by solving:

(0 (0.73) G(&(78), 57) + Ba(0,73) F(@ (7). i(72), 7))

+ <ocev(—j7) AF G- +1),)
j=1

+ 6ev(_j7 T(:’) f(.f*(l -] + 1)7 ﬁ(ti7j+1)7 ﬁ*)> = 67 and (22)

gev(Tetvv f*(Tet*)7 ﬁ*) =0. (23)

These equations are similar to Eq. (2). But here, we treat both the next
time-point 7., and the next DAE state Z*(7,;) as unknowns. So, the « and /3
coefficients become functions of the unknowns as well. Also, we use LMS
approximations to calculate the i *(Te’;) term in Egs. (19) and (20).

Finally, the sensitivity of our event-driven objective function is given by:

M
S¢ = J;:p + Z (JI:TWSTW + J;;x('rgv)sxﬂ\') .

ev=1

(24)

J. Augmenting the sensitivity DAG for event-driven objective functions

Fig. 6 shows the steps involved in adding an event-driven objective
function to the sensitivity DAG. For each event 1 < ev < M, we add three
new nodes to the DAG (Fig. 6a): a partial Z*(7;,) node whose sensitivity
equals S;(74) (which is created just like any other node in the transient
simulation, following §II-D), and nodes corresponding to 7., and Z*(7;),
which are created according to Eqs. (19) and (20) respectively. The edges
associated with these nodes, and their weights, are shown in Fig. 6a.

Finally, a single new node <z§* is added to the DAG to capture the event-
driven objective function. As shown in Fig. 6b, this node has incoming edges
from p™*, as well as from all the 7, and Z*(7;;) nodes added above. The
weights of these edges, as shown in the figure, follow Eq. (24).

K. DAGSENS: The overall flow for event-driven objective functions

Based on the preceding sections, Algorithm 3 outlines the overall flow
that DAGSENS uses for computing direct and adjoint sensitivities of event-
driven objective functions.

using Eq. (9)

e | x |E*
b New nodes added
N
Weights calculated
Nodes
already

Weight calculated

present / using Eq. (8)

Fig. 6. (a) Adding events, and (b) adding an event-driven objective function, to the
sensitivity DAG.

Algorithm 3: Event-driven sensitivity analysis in DAGSENS

Input: A DAE D in the form of Eq. (1), nominal DAE parameters p™*,
DAE inputs #(t) over an interval [to,ty], events 1 < ev < M
in the form of Eq. (17), and an event-driven objective function
¢ in the form of Eq. (18)

Output: The sensitivity of the objective function with respect to the

DAE parameters, evaluated at p™*

[

Do a transient analysis of D, using parameters p*, with inputs (¢),
over the time-interval [to, ¢ f].

Record Jacobians Jg, (), Jg,(t), J7,(t), and JF,(t) from the transient
simulation.

N

w

Build a sensitivity DAG G, using information from the transient run
and the Jacobians above, via Egs. (7), (8), and (9).

for 1 <ev < M do
Solve for event ev, i.e., find 7., and Z*(7.;), by constructing and
solving Eqgs. (22) and (23).
6 Augment the sensitivity DAG with nodes corresponding to ev, as
outlined in §II-J.

A

=

Augment the sensitivity DAG with a ¢ node, as outlined in §II-J.

®

Traverse the sensitivity DAG using either Algorithm 1 (for direct
sensitivities), or Algorithm 2 (for adjoint sensitivities).

e

Return the sensitivities computed above.

ITI. RESULTS

We have developed a Python implementation of DAGSENS, which we
now apply to compute event-driven sensitivities in some electronic and
biological applications, including high-speed communication, statistical cell
library characterization, and gene expression in Drosophila embryos.

A. High-speed communications sub-systems

1) A “maximum crosstalk” example: In modern high-speed I/O links,
“crosstalk” between parallel channels (e.g., those found in a CPU/DRAM
interface) often adversely impacts bandwidth [27]-[29]. When two signal-
carrying lines are physically close to one another on-chip, the bits transported
in one of the lines (the aggressor) often interfere with those in the other line
(the victim), via cross-coupled capacitances [27]-[29].

Fig. 7 (a) shows the circuit that we designed to tease out the impact of
such crosstalk. The aggressor and victim are both modelled as RC chains
driving capacitive loads. The circuit consists of two sub-circuits: the one on
the right where crosstalk is modelled via cross-coupled capacitances, and

: Max Crosstalk Sensitivities

! i Aggressor

»| Aggressor

_ Without Pre/De-Emphasis With Pre/De-Emphasis
T I H Sensitivity(Max Crosstalk)
3 Cioad | 0.06

(d) (e)

0.05

Sensitivity(Max Crosstalk)

H [P N units »| |+ | Aggressor N units

: = Tl iy | it Pattern !
1 i Cioad I Cseg I Cseg I Cseg I : e P'E:]De_ == Cseg —=Cseg

H H mphasis

T L T T a

: out | l " vee b A Y < > AMA

s
>3
|
L
o I
&
<
o
g
g

H : @ Lo £ Eon
H H g 0.03 §
H i 2 2003

“ee T Zon 2
VT Vour V] o g
' Ml l Rieo l Reg Pre/De H E E 0.02
! Cloag Cseg Cseq Cseg Emphasis =Gy T=Coe ==Cseg Coad i} | & 4
STCT T T TT e i
H : N N . Victim) - N) H
HY |« N units ' " |« N units »| ictim: 1
: Victim = : Bit Pattern ™ i Victim E 0.00, 5 10 15 20 0.00 5 10 15 20
: Subcircuit without crosstalk ! : Subcircuit with crosstalk ! Segment Resistance Index Segment Resistance Index
-- ' Mol T Sensitivity(Max Crosstalk) Sensitivity(Max Crosstalk)

» —{ abs(.) T < 0.10

Without Pre/De-Emphasis I With Pre/De-Emphasis (f) (g)
C al 0.08 0.08

— Vin(agg)
—— Vin(vic)

— Real Vout(agg) — Crosstalk

==~ Ideal Vout(agg)

—— Real Vout(vic)
-~ Ideal Vout(vic)

— Vin(agg)
—— Vin(vic)

—— Real Vout(agg)
-~ Ideal Vout(agg)

—— Real Vout(vic)
-=-- Ideal Vout(vic)

—— Crosstalk

1 (b) _I I—I 1 (c)

°
°
&
°
S
8

°
°
2

Sensitivity (V/pF)
°
5
2

Sensitivity (V/pF)

°
2
o
S
5

0.00 5 10 15 20 000 5 10 15 20

Time (ns)

Fig. 7.

Time (ns)

s s Segment Capacitance Index Segment Capacitance Index
N 2
Py - L .
g1 g0 Sensitivity(Max Crosstalk) Sensitivity(Max Crosstalk)
8 8
S g ! 040
o30r (h) 035 (i)
0 025 __030
014 & g
So20 So02s
2z 2020
S0 z
-E E 015
010
& & o010
: 005 0.05
: 0
. : 0.00 0.00
10 20 30 40 50 10 20 30 40 50 M 10 15 20 s 10 15 20

Coupling Capacitance Index Coupling Capacitance Index

(a) The circuit used to determine the magnitude of crosstalk induced by the aggressor line on the victim line in our I/O link. (b, ¢) Transient simulation of the circuit

in (a) without and with pre/de-emphasis respectively, with the event corresponding to maximum crosstalk in each case. (d through i) Sensitivity of the maximum crosstalk
induced by the aggressor line on the victim line, with respect to each segment resistance (d, e), each segment capacitance (f, g), and each cross-coupling capacitance (h, i)

along the 1/O link, without (d, f, h) and with (e, g, i) pre/de-emphasis.

Parameter Without With % impact of
Pre/De-Emphasis ~ Pre/De-Emphasis Pre/De-Emphasis

¢ (V) 0.1183 0.1372 15.98%

Total Rieg (k) 0.6611 0.5219 —21.06%
Sens(g) Total Cseg (pF) 0.7770 0.7851 1.04%
) Total Ceross (pF) 3.9643 4.7049 18.68%
Cload (pF) 4.0547 4.7960 18.28%

Table 2. The impact of using pre/de-emphasis on the sensitivities of maximum

crosstalk (¢), with respect to total segment resistance, total segment capacitance, as
well as load parameters.

the one on the left without crosstalk. The difference between the victim’s
outputs in these two sub-circuits is a measure of crosstalk (Fig. 7a).

Our “event of interest” is when the crosstalk reaches its maximum value
during a transient run. And our event-driven objective function ¢ is the value
of this maximum crosstalk. Parts (b) and (c) of Fig. 7 depict these events
during the course of the transient simulation, where the aggressor and victim
lines transmit their bits without and with pre/de-emphasis respectively. While
pre/de-emphasis is a good strategy for boosting bandwidth by improving
signal integrity at the receiver end, it can have the drawback of increasing
crosstalk [27]-[29].

Parts (d) to (i) of Fig. 7 show the results of applying DAGSENS to this
system above, where the sensitivities of the maximum crosstalk with respect
to each segment resistance, segment capacitance, and segment coupling
capacitance are plotted as bar charts. In particular, it is interesting to see
(parts d, e) that the maximum crosstalk is much more sensitive to the first few
segment resistances when pre/de-emphasis is employed. Also, it is interesting
to see that the sensitivities with respect to the segment capacitances rise in a
convex manner (parts f, g), while those with respect to coupling capacitances
rise in a concave manner (parts h, i). Table 2 shows the precise impact
of using pre/de-emphasis on maximum crosstalk sensitivities with respect
to various system and load parameters. Thus, event-driven DAGSENS can
allow high-speed link engineers to obtain various insights that would not be
possible with existing sensitivity analysis tools.

Since our objective function has dimension 1, as opposed to the DAE

N tair taj Adj. speedup
1 2.50 s 2.09 s 1.19
5 5.39 s 4.21's 1.28
10 9.03 s 6.83 s 1.32
20 16.47 s 12.13 s 1.36
50 38.98 s 27.74 s 1.41
100 1.32 mins 53.92 s 1.47
200 2.92 mins 1.77 mins 1.66
500 10.37 mins 4.41 mins 2.35
1000 1.33 hours 9.03 mins 8.81
2000 6.06 hours 18.27 mins 19.90
= Out of memory .
5000 after > 27 hours 46.11 mins > 35
10000 Did not try 1.55 hours N/A

Table 3. Adjoint sensitivity analysis carries powerful advantages over direct sensitivity
analysis when the dimension of the objective function is much smaller than that of
the DAE parameter space.

parameter space that has a dimension O(3N), where N is the number
of RC segments, this is also a good test case to illustrate the benefits of
adjoint over direct sensitivity analysis. Table 3 illustrates this by showing the
speedups achieved by adjoint DAGSENS over direct DAGSENS for various
N: as N increases, these speedups become more impressive. We note that,
at present, DAGSENS is a proof-of-concept code written in Python rather
than production code written in a language like C or C++. In particular,
efficient garbage collection and memory management techniques have not
been implemented in DAGSENS yet, which is why the program can run out
of memory relatively easily. We plan to address these issues in the future
(8IV), but we believe that the benefits of adjoint analysis over direct analysis
are still clear from Table 3.

2) A PLL example: PLLs are widely used in high-speed commu-
nication sub-systems for frequency synthesis, clock and data recovery
(CDR), etc. [27], [30], [31]. The lock time of a PLL, i.e., how quickly
the PLL can lock to a new input frequency, is of critical importance in these
applications. Since a PLL achieving lock is a transient event, we can use
DAGSENS to calculate the sensivities of a PLL’s lock time with respect to
its parameters.

(b) PLL simulation with loop filter bandwidth 0.11GHz

Vin —— Vout —— VCO:Vctl WM Peak-to-peak time delta between Vin and vout]

Vin = cos(¢in)

Phase Frequency
Detector (PFD) 1oV
0.44ns

YprD = KpFD VinVout

TRAN waveforms of interest

0.13ns

i
I
L

i— Lock lost

|

<— Lock regained
IIII!IIIIIIIIIIIIIIIIII

VPFD
y

40

60 70 80

ns)

Loop Filter (RC) S, » M\ o vetl | fveti swing NV
Vet1 = VPFD Voo c y Swingt Lock lost —» Lock—»
—ctl _rrD I Lock lost Lock regained —»| \/?e/gained
Cdr_lz (Vett ~ V) =0 = Vet Y. [Exploded view] \/\/\/ [Exploded view]

(c) PLL simulation withAoop filter bandwidth 0.45GHz

Ve

ctl

Voltage Controlled Oscillator (VCO)

Vvin — Vout — vc}){vm mmm Peak-to-peak time delta between-Virrand Vout |

RN

]

d . .
%‘r"out =27 (fVCO + K VCOVctl)

Vout = cos(dout) ov
0.44ns

TRAN waveforms of interest

Vout 0.13ns

-

— Lock lost
i¢—— Lock regained

ARNNNNNNNNANNNNN NN RN EEREE
6 70 80

30 40

Fig. 8.

50 Time (ns)

(a) Block diagram of a PLL, with the underlying equations, (b, ¢) Transient simulation of low-bandwidth (b) and high-bandwidth (c) PLLs on an input waveform

that abruptly changes frequency at ¢ = 50ns. The high-bandwidth PLL regains lock more quickly, but features a larger peak-to-peak swing in V¢ around its ideal DC value.

Low Bandwidth
(fe = 0.11GHz)
Loop Filter

High Bandwidth
(fe = 0.45GHz)
Loop Filter

Lock Veu swing Lock Veu swing
Parameter time (ns) (mV) time (ns) (mV)
] 14.85 45.41 1.68 182.94
Kprp (V1) —1.59 45.76 —0.07 188.67

R (kQ) 1.21 —32.61 0.13 —259.66

Sens(¢) C (pF) 1.69 —45.65 0.18 —363.53
Kvyco (V~'GHz) —5.29 0.35 —0.39 5.72
fvco (GHz) —18.48 —0.07 —1.09 0.93

Table 4. Sensitivities of PLL lock times and peak-to-peak V;; swings when locked,
with respect to various macromodel parameters, for both low and high bandwidth loop
filters.

Fig. 8 (a) shows a high-level block-diagram for a PLL, and also the
equations and parameters associated with each PLL component [30], [31].
Parts (b) and (c) of Fig. 8 show transient simulations of two different PLLs,
one (b) with a low-bandwidth loop filter and the other (c) with a high-
bandwidth loop filter. In each case, the input waveform abruptly switches its
frequency at ¢ = 50ns, throwing the PLLs off-lock. The PLLs then eventually
regain lock, as can be seen from the red bars that graph the time elapsed
between the peaks of Vi, (the PLL input) and the nearest peaks of Vo
(the PLL output) in each case. Our event-driven objective functions are the
respective PLL lock times, defined as the time taken for the respective Vu
waveforms to settle into a narrow range around their final expected values.
The peak-to-peak swing in Ve is also an objective function of interest; if
one used an ideal loop filter, Viy would settle to a DC value, so this swing in
Ve is a measure of non-ideality in the PLL’s response. While we would like
PLLs to lock quickly and have small Viy swings, there is often a tradeoff
between these metrics: high (low) bandwidth PLLs lock quickly (slowly),
but exhibit larger (smaller) Viy swings, as shown in parts (b) and (c) of
Fig. 8.

Table 4 shows the sensitivities of both the event-driven objective functions
above (PLL lock times as well as Viq swings at lock), with respect to the
PLL macromodel parameters shown in Fig. 8 (a). From the table, it is clear
that when a high (low) bandwidth loop filter is used in the PLL, both the
lock time and its sensitivities tend to be lower (higher), whereas both the
Ve swing at lock and its sensitivities tend to be higher (lower).

B. Statistical cell library characterization

As we approach the age of 7 nm CMOS and near/sub-threshold computing,
statistical characterization of cell libraries for digital design, taking into
account the sensitivities of important performance metrics like timing and
power consumption, with respect to parameter variability, is crucial [12],
[32], [33].

VDD

Fig. 9. A CMOS NAND gate driving an RC load.

We now use DAGSENS to calculate the sensitivities of one such event-
driven metric, namely, the 20% to 80% transition delay, of a 22 nm CMOS
NAND gate driving an RC load (Fig. 9), to various NMOS, PMOS, and
load parameters.

NAND gate response for (A, B): (0, 0) -> (1, 1) NAND gate response for (A, B): (1, 1) -> (0, 0)

[—VinA — vinB — voutiC| [— ViniA — VinB — voutiC]
14 1 .
(a) k) |
o
1
s S
wn wn 11
3 3
80%
k) £ ®
o o 80% transition
> > complete event
20%
transition
80% transition complete Delay objfunc
A complete event event \
80% 20% 7
0- Delay objfunc o0l
0.00 0.25 0.50 0.75 1.00 125 0.00 0.25 0.50 075 1.00 125
Time (ns) Time (ns)

Fig. 10. Transient simulation of the CMOS NAND gate of Fig. 9 for two different
input transitions, showing the 20% and 80% “transition complete” events, and the
corresponding “delay” objective function in each case.

Fig. 10 shows 2 transitions of the NAND gate above; although there are
6 possible transitions that switch the output, we show only 2 due to space
constraints, although we analyze the sensitivities of all 6 in Table 5 below.
Fig. 10 also shows the ”20% complete” and “80% complete” events in each
case, as well as our event-driven gate delay objective function, i.e., the time
elapsed between these two events.

Table 5 shows the event-driven sensitivities of the NAND gate delay to

Parameter

Pull down transitions

Pull up transitions

Input transition (A, B) 0, 0) > (1,1) (0, 1) = (1, 1) (1,0 —(1,1) (1, 1)— (1,0 (1, 1)—(0, 1) (1, 1) — (0, 0)
& (ps) 292.70 292.89 292.85 302.92 293.93 147.38
W (nm) 7.87 x 1076 3.37 x 10~° 2.11 x 1075 —4.96 —4.77 —2.37

L (nm) —2.36 x 1072 —1.01 x 104 —6.32 x 107° 14.87 14.31 7.12

Vin (V) 8.66 x 104 3.71 x 1073 2.32 x 1073 —904.66 —867.64 —431.64

Sens(¢) Ry (kQ) 9.93 x 104 9.78 x 107* 9.81 x 10~4 0.68 0.66 0.31
wrt PMOS Rs (kQ) —3.75 x 1076 —1.79 x 107° —1.11 x 107° 2.88 2.76 1.38
parameters Rgs (GQ) —0.15 —0.15 —0.15 0.15 0.14 0.04
Cya (fF) 572.50 560.58 562.92 625.30 620.19 326.68

Cys (fF) 3.05 x 1077 1.65 x 107 1.73x 1077 5.24 x 1073 5.10 x 1073 4.69 x 1073

Cap, (fF) 542.01 544.03 545.59 576.72 573.06 283.58

Cyp (F) 5.42 x 1014 5.72 x 10~14 5.14 x 10~14 4.96 x 107 4.94 x 1077 5.04 x 10~7

W (nm) —6.79 —6.80 —6.82 1.32 x 1073 2.77 x 10~ —2.81 x 1073

L (nm) 13.59 13.61 13.65 —2.65 x 1073 —5.54 x 1074 5.62 x 1073

Vin (V) 813.20 814.42 816.31 —25.84 —-0.02 —0.72

Sens(¢) Ry (kQ) 2.53 2.54 2.54 7.86 x 10—3 3.31 x 10~ 5.18 x 10~*
wit NMOS Rs (kQ) 4.51 4.50 4.52 5.73 x 1074 —2.04 x 107% —4.64 x 107°
parameters Rys (GQ) 0.03 0.03 0.03 —0.06 —0.08 —0.02
Cya (fF) 321.58 311.81 310.31 510.84 333.66 174.65

Cys (fF) 35.36 32.44 28.97 173.82 2.34 x 1073 11.30

Ciyp (fF) 208.82 295.27 301.73 462.18 286.53 141.53

Cygp (fF) 27.84 23.28 28.97 173.82 6.84 x 10~° —0.27

Sens(¢) wrt Rioaa (k) 0.57 0.57 0.57 0.54 0.59 0.59
load parameters Cload (fF) 272.14 273.15 273.93 289.45 287.71 142.98

Table 5. NAND gate delay sensitivities with respect to various NMOS,

various NMOS and PMOS parameters (including widths, lengths, threshold
voltages, parasitic resistances and capacitances, efc.), as well as load pa-
rameters. It is interesting to see that, in most cases (although not all), the
gate delay is more sensitive to PMOS (NMOS) parameters during “pull up”
(“pull down”) transitions, as one would intuitively expect. Thus, DAGSENS
can be useful for finding parametric sensitivies of important timing-related
event-driven objective functions for statistical cell library characterization.

C. Biological applications

We now apply DAGSENS to compute event-driven parametric sensitivities
in a biological example, i.e., gene expression via transcription, translation,
decay, and diffusion in Drosophila embryos (Fig. 11, [34], [35]).

Transcription
a —_—> - + mRNA diffusion proportional to conc. difference
«—_, “«—_,
Gene o mRNA Gene
<« %
“—— «—
R Decay . protein diffusion proportional to conc. difference
ERE =) ——— » Nothing ()

mRNA @

Fig. 11. A model for gene expression in a Drosophila embryo, featuring transcription,
translation, and decay (part a), as well as diffusion across nuclei (part b).

The system consists of a Drosophila gene that generates mRNA molecules
via transcription, which in turn generates protein molecules via translation.
In parallel, the mRNA and protein molecules also decay. This is all shown in
Fig. 11 (a) [34], [35]. Somewhat complicating the process, these reactions
take place in a linear chain of sites (called nuclei), and whenever there
is an mRNA/protein concentration difference between two adjacent nuclei,
mRNA/protein molecules flow across nuclei to balance the gap [34], [35].

In this example, we have N = 52 nuclei, and each nuclus ¢ (Where
1 <4 < N) has an mRNA concentration (denoted [mMRNA];) and a protein
concentration (denoted [protein];). The system has a single exponentially
decaying external input u(t) that governs the rate of transcription. The
differential-equation model for the system is:

PMOS, and load parameters, for all input transitions that switch the output.

d
d_ [mRNA]i = UmRNAU(t) + dmRNA([mRNA]ifl — [mRNA]i)
t ————

Transcription Diffusion from previous nucleus
+ dmRNA([mRNA]i+1 — [mRNA]l) — AmRNA [IIlRNA]i7 and 25)
Diffusion from next nucleus Decay
%[protein]i = Oprotein[MRNA]; + dprotein ([protein];—1 — [protein];)
Translation Diffusion from previous nucleus
+ dprotein ([protein];+1 — [protein];) — Aprotein [protein]s; , (26)

Diffusion from next nucleus Decay

with the understanding that the “diffusion from previous nucleus” and
“diffusion from next nucleus” terms are 0 for the first (4 = 1) and last
(i = N) respectively.

Gene expression in Drosophila embryo: mRNA and protein concentrations
2

\

Each nucleus features a maximum [mRNA] event

[mRNA]

0.0

5 10 15 20 25

3.2

=
]
S1.4
=
Each nucleus features a maximum [protein] event
0.0
0 5 10 15 20 25
Time (minutes)
Fig. 12. Transient simulation of gene expression in a Drosophila embryo.

Fig. 12 shows a transient run of the system above. As the figure shows,
at each nucleus ¢, there comes a time when [mMRNA]; reaches its maximum
value (before mRNA decay begins to take its toll), and a (slightly later)
time when [protein]; reaches its maximum value (before protein decay takes
its toll). These “maximum concentration” events are of interest in many
gene expression systems, and so we set the times of these events, and
the corresponding maximum concentration values, to be our event-driven
objective functions.

Fig. 13 shows a plot of these event-driven sensitivities, across nuclei,
with respect to various system parameters. It is interesting to see that,
while the peak mRNA and protein event times, as well as the peak mRNA
concentration value, are all most sensitive to the mRNA decay constant
AmrNa, the peak protein concentration value is most sensitive to the protein
translation constant oproein, for all the nuclei.

Sens([mRNA] peak time) Sens([protein] peak time)

9.0 _j\/—/_ T8]

(a) (b)
0.0 1 I 0.0

Nuclei
Sens([mRNA] peak value)
11.6

V

(c)

A

30
Nuclei

Sens([protein] peak value)

12A97—_/_
(d)

0.0 0.0
1 10 20 30 40 50 1 10 20 30 40 50

Nuclei Nuclei

— Sens. wrt oprna = Sens. wrt dprna = Sens. wrt Aprna

— Sens. WIt Oprotein === Sens. Wrt dprotein Sens. WIt Aprotein

Fig. 13. Sensitivities of peak mRNA and protein concentrations, as well as the times
at which these peak concentrations occur, across nuclei, for the Drosophila embryo
gene expression system.

IV. SUMMARY, CONCLUSIONS, AND FUTURE WORK

To summarise, we have developed and demonstrated DAGSENS, a simple,
elegant, and powerful theory for transient sensitivity analysis based on
directed acyclic graphs. We have also shown how DAGSENS can be applied
to carry out direct and adjoint transient sensitivity analysis of an entirely
new kind of objective function defined based on events that happen during
a transient simulation. We have demonstrated this on several real-world
applications including high-speed communication, statistical cell library
characterization, and gene expression in biological systems.

In future, we would like to significantly improve the DAGSENS code-
base, for better CPU and memory performance; in particular, we would like
to migrate DAGSENS from a proof-of-concept Python implementation to
a production-level C++ implementation in the open-source circuit simulator
Xyce [15]. We believe that this would enable us to run DAGSENS on much
larger examples than we can at present.

REFERENCES

[1] J. Nocedal and S. Wright. Numerical optimization. Springer-Verlag, New York, 2006.

[2] A. K. Alekseev, I. M. Navon, and M. E. Zelentsov. The estimation of functional uncertainty using polynomial chaos and adjoint
equations. International Journal for Numerical Methods in Fluids, 67(3):328-341, 2011.

[3] R. M. Errico. What is an adjoint model? Bulletin of the American Meteorological Society, 78(11):2577-2591, 1997.

[4] Y. Cao and L. Petzold. A posteriori error estimation and global error control for ordinary differential equations by the adjoint
method. SIAM Journal on Scientific Computing, 26(2):359-374, 2004.

[5] S. Director and R. Rohrer. The generalized adjoint network and network sensitivities.
16(3):318-323, 1969.

[6] D. E. Hocevar, P. Yang, T. N. Trick, and B. D. Epler. Transient sensitivity computation for MOSFET circuits. IEEE Transactions
on Electron Devices, 32(10):2165-2176, 1985.

[71 A.R. Conn, P. K. Coulman, R. A. Haring, G. L. Morrill, C. Visweswariah, and C. W. Wu. JiffyTune: Circuit optimization using
time-domain sensitivities. /EEE Tr on Comy Aided Design of I 1 Circuits and Systems, 17(12):1292-1309,
1998.

[8] C. Gu and J. Roychowdhury. An efficient, fully non-linear, variability-aware non-Monte-Carlo yield estimation procedure with

applications to SRAM cells and ring oscillators. In ASPDAC '08: Proceedings of the 13" Asia and South Pacific Design

Automation Conference, pages 754-761, 2008.

A. Meir and J. Roychowdhury. BLAST: Efficient computation of linear delay s

using barycentric Lagrange enabled transient adjoint analysis. In DAC '12: Proceedings of the 49™ Apnual Design Automation
Conference, pages 301-310, 2012.
[10] Y. Cao, S. Li, L. Petzold, and R. Serban. Adjoint sensitivity analysis for differential-algebraic equations: The adjoint DAE system
and its numerical solution. SIAM Journal on Scientific Computing, 24(3):1076-1089, 2003.

[11] E Y. Liu and P. Feldmann. A time-unrolling method to compute sensitivity of dynamic systems. In DAC ’14: Proceedings of the
515 Annual Design Automation Conference, 2014.

[12] B. Gu, K. Gullapalli, Y. Zhang, and S. Sundareswaran. Faster statistical cell characterization using adjoint sensitivity analysis. In
CICC '08: Proceedings of the 30™ Annual Custom Integrated Circuits Conference, pages 229-232, 2008.

[13] R. Bartlett. A derivation of forward and adjoint sensitivities for ODEs and DAEs. Technical report, Sandia National Laboratories,
2008.

[14] Synopsys. HSPICE® user guide: Simulation and analysis, 2010.

[15] E.R. Keiter, K. V. Aadithya, T. Mei, T. V. Russo, R. L. Schick, P. E. Sholander, H. K. Thornquist, and JI. C. Verley. Xyce®
parallel electronic simulator (v6.6): User’s guide. Technical report, Sandia National Laboratories, Albuquerque, NM, USA, 2016.

[16] C. H. Bischof, P. D. Hovland, and B. Norris. On the implementation of automatic differentiation tools. Higher-Order and Symbolic
Computation, 21(3):311-331, 2008.

[17] A. Griewank and A. Walther. Evaluating derivatives: Principles and

[18] J. Roychowdhury. Numerical simulation and modelling of electronic and bi
Design Automation, 3(2-3):97-303, 2009.
[19] L. W. Nagel. SPICE2: A computer program to simulate semiconductor circuits. PhD thesis, UC Berkeley, 1975.
[20] L. Edelstein-Keshet. Mathematical models in biology. SIAM, 2005.
[21] A. L. Sangiovanni-Vincentelli. Computer Design Aids for VLSI Circuits, chapter Circuit simulation, pages 19-112. Springer,
Netherlands, 1984.

[22] L. O. Chua and P. M. Lin. Computer-aided analysis of electronic circuits: Algorithms and computational techniques. 1975.

[23] H. Shich: I ion system of a li transient network analysis program. [EEE Transactions on Circuit Theory,
17(3):378-386, 1970.

[24] C. W. Gear. The numerical integration of ordinary differential equations. Mathematics of Computation, 21(98):146-156, 1967.

[25] J. Kleinberg and E. Tardos. Algorithm design. Pearson Education, 2006.

[26] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen. Introduction to algorithms. The MIT Press, 2001.

[27] G. Balamurugan, B. Casper, J. E. Jaussi, M. Mansuri, F. O’Mahony, and J. Kennedy. Modelling and analysis of high-speed 1/0

links. IEEE Ty on Advanced Packaging, 32(2):237-247, 2009.
[28] P. K. Hanumolu, G. Y. Wei, and U. K. Moon. Equalizers for high-speed serial links.
Electronics and Systems, 15(2):429-458, 2005.

IEEE Transactions on Circuit Theory,

9 nsitivities in el ic and biol 1 networks

o

I
ithmic

SIAM, 2008.
and Trends in Electronic

of alg
1 systems.

International Journal of High Speed

J. A. Davis and J. D. Meindl. Interconnect technology and design for gigascale integration. Springer, Netherlands, 2003.

B. Razavi. Design of analog CMOS integrated circuits. Tata McGraw-Hill Publishing Company Ltd., New Delhi, India, 2001.
J. L. Stensby. Phase-locked loops: Theory and applications. CRC Press, 1997.

A. Goel and S. Vrudhula. Statistical waveform and current source based standard cell models for accurate timing analysis. In
DAC "08: Proceedings of the 45™ Annual Design Automation Conference, pages 227-230, 2008.

L. Yu, S. Saxena, C. Hess, I. M. Elfadel, D. Antoniadis, and D. Boning. Statistical library characterization using belief propagation
across multiple technology nodes. In DATE °15: Proceedings of the 181 Design, Automation & Test Conference in Europe, pages
1383-1388, 2015.

J. M. Dresch, M. A. Thompson, D. N. Arnosti, and C. Chiu. Two-layer math 1l lelling of gene exp
DNA-level information and system dynamics. SIAM Journal on Applied Mathematics, 73(2):804-826, 2013.
G. D. McCarthy, R. A. Drewell, and J. M. Dresch. Global sensitivity analysis of a dynamic model for gene expression in Drosophila
embryos. PeerJ, 3:21022, 2015.

Incorporating

