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Li-S Cell Redox Chemistry

| Successive reduction/oxidation of sulfur:
—+ e S (insoluble)
S, Li,S; )
Li,S,

(O] .
§ W Li,S,. — Lithium polysulfides
<c_§/- E—h in solution
= S LiS;
= 8 Li,S (insoluble)
<
=

Li.S . i .

2 Sg+ 16 Li*+ 16 e < 8 Li,S

at ~ 2.1V vs. Li*/Li— 1672 mAh/g. ...

Practical: ~ 1200 mAh/g
Theoretical: 2567 Wh/kg; 2200 Wh/L
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Li-S is at a Crossroad

solid state sulfur batteries

I

LImited commercialization Conventional approach

— -

l

Liquid electrolyte sulfur batteries
Multipronged approach — best in class concepts
Manage dissolution/precipitation at low E/S, high capacity

}
LiPS very soluble LiPS sparingly soluble

EPD solvents, like Li-O, “Pb-acid battery”
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Three key challenges for practical Li/S batteries
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Critical development path:

« Stable Li anode at 6 mAh/cm?, 6
mA/cm? (1C), 50-100% excess

« High capacity cathode with low
per cycle loss

* Reduced electrolyte volume
fraction approaching 50%, 1 ml/gg

Design Couple Li protection
guidelines strategies with sparingly

— solvating electrolytes

Capacity * E/S ° limited Li

Eroglu et al., J. Electrochem. Soc., 162(6) A982 (2015)
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Advances are made through integration of
critical materials concepts

Cathode architecture
e/Li* continuity
compliant, functional framework

Anode interface design multifunctional binders

no parasitics o
o para o BN L|255<—>L|254
dimensional contr ®
no dendrites Li,Sg '{ \ Li,S
Q o
membranes °L®

Li,S,

—
o :hode interface design

v acile kinetics
moderate LiPS binding

polar surfaces

Electrolyte design

control LiPS solubility
control Sg/S? nucleation & growth

solvates
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Minimizing Activity Loss with Sparingly Solvating

Electrolytes

Two strategies:

« Highly solvating electrolytes

« Sparingly solvating electrolytes

Sg + 16Li* +16e- — mLi,S, — 8Li,S
LiPS mediate the overall EC reaction

At low E/S, saturation will dominate irrespective of LiPS solubility
Sparingly solvated concept demonstrated to greatly reduce redox shuttle

@ Lt Salt anion & Solvent

Diluent
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@ iNeRGY L. Cheng et al. 10.1021/acsenergylett.6b00194 JCESR tonrcammmnron




Sparingly Solvating Concept Demonstrated

Dilute ether - solution mediated mechanism Kinetic model
3.2 -t I -t 17T -t I 1
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28 - _gal {08 &
__ 26} ) = o
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"0 200 400 600 800 1000 1200 1400 1600 0 250 500 750 1000 1250 1500 1750
Specific capacity (mAh/g.) Specific capacity (mAh/g,)
Solvate - semi-solid state mechanism ¥Se + 2Lir+ 2e- > LigSs  [2=22V
1Li2Sg + Lit + e+ Lia Sz Je=24V
L ) LizSz + LizSs ¢ Liz5 + Liz5¢ redox mediation
Similar results observed in select ether LizS3 + 1/88s & LiaS; Ss consumption
LizSz = Liz8 + 145z LiaSs consumption

solvates, other sparingly solvating systems

Tune mechanism & kinetics through redox intermediate solubility

@ ENeRGY C.-W. Lee, Q. Pang et al. ACS Central Science JCESR| omr centenron - ceancn



Required LiPS Solubilities for Redox Mediation

Clear distinction between dilute and solvate regimes based on donicity
of the electrolyte

Solubility is tuned within the solvate regime

> 100
dilute regime ® THF
_ = a ® > @ 807 oA
a -
& i =
<= € - 2 o
c 2:1¢
© o000 @ =
g_ f v 40 -
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5 t' , 20 -
solvate regime e 2:1
° .
o 7 T T T T = 7 T T 0 T T T T T T
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Solv:LiTFS]

DN (kcal/mol)

mM equivalent S concentrations — dependent upon solvent and diluent

T. Watkins et al. in preparation
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Augmented redox mediation is critical for lean
electrolyte operation

Electrolyte Genome: rational design of a redox mediator

| Tailored Reduction
Potential Mutations of PAH molecules and
m subsequent computational screening for
© ) matching charge/discharge potential of a
'l - Li-S battery

&,
T @ Q S nucleation and
Mutation i rous 3D deposition
|
6-fold improved sulfur utilization and rate perf Nucleation of
Li,SonC cloth
0.2
<
=
+« 0.0
3
5-0.2
(&
-0.4

2.0 24 . 2.8 = 0 200 400 600 800
Voltage vs Li/Li (V) Capacity (mAh/g S) No BPI With BPI

@ EERGY L. Gerber et al., 10.1021/acs.nanolett.5b04189 JCESR lommemrmeon



Performance is limited in a solvate

High capacity
High rate

Low capacity

Low rate
Low E/S High E/S
Li(MeCN),TFSI = TTE, 55°C
6 - @ 10 mi/g Charge Decoupling the cathode
* 10 mi/g Discharge Two separated electrolytes
5 1 a5 mijfg Charge Ohara single ion conductor (LiTiAIPO,)
8 ® 5 mi/g Discharge
é 4 - a 3 mi/g Charge:
:&;" ® 3 mi/g Discharge
E_‘” 3 5 ] ‘-i' 0.26%/cycle
L] u
() »
1| -
intrinsic cathode fade rate for a
0 T U T U " T m 7 moderate capacity cathode
0 10 20 30 40 50 60 70 80
Cycle Number
Early cycle fade is an electrolyte/anode limit Late cycle fade is a cathode limit
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Slow Rate High Capacity Li Cycling in a Solvate

MeCN,:LiTFSI-TTE, 5 ml/gg, C/30, 5 mAh/cm?, 0.13

mA/cm?
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Fade scales with lower E/S, greater current

density/greater capacity

dense SEI- high impedance
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volution of Li Anode Morphology in an Solvate

lectrolyte | itrsiTTE, 3 mig55°C, 6 mAR/m2, 0.6 mAVem?

o
P2

g

rese

curr Hi curr
00 kV | 25pA | 128 pym 13 pA

curr
0KV | 13 pA | 171 pm
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Morphology evolution is not strongly dependent

on solvent used 3 mligs,55°C, 6 mAh/cm2, 0.6 mA/cm2

1M LiTFSI DOL:DME, 25°C, 10 ml/gg

HFW
102 pm agellan

THF,LITFSI-TT

o - ;

curr HFW —1 A |1 S—

13 pA | 102 pm | 4.1 mm Magellan
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Maintaining material inventory is key

Percentage of needed inventory intact

180%

160%

140%

120% -

100%

80%
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0%

Volumetric Energy Density Loss with Extra Inventory (estimate), 27%

+5.2 pL/cm? extra solvent

+ 8 um/cm? extra Li

-

0 20 40 60 80

100
Cycle

Electrolyte loss is more critical — low density phase
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Problem: Finding an optimum electrolyte for Li
stripping/plating & S/Li,S conversion

Approach: Control Electrolyte Contact with
the Anode — protect both

WWW.jcesr.org JCEQ JOINT CENTER FOR
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Strategies Pursued by the Community

S 4.0 2, o 8
Porous anode hosts N _/_dv\s//”z—"zg {" LI &
. lyimi e/ §\C nO shel .
« enhanced surface area to lower current density 4

* minimum mass and volume Before Listripping

Elastic polymer coatings
« accommodate local volume change
« maintain a coherent interface

With Hydrogen Bonding Sites

2 ——
R ‘."'.z.'--
"W

i . F

G. Zheng et al. 10.1021/acsenergylett.6b00456 ¢

Safety is important — dimensional control issues are a non-starter

Equally important — low Coulombic efficiency (99.9) is a non-starter
« preserve both electrolyte and lithium
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Diverse suite of protection strategies are pursued

Polymer scaffolds for directed SEI growth Lithium
* mechanical compliance and uniform ionic flux : F =
40 "1,\,
g 20
§ -20 L

Time (h)

Inorganic or composite films grown on Li Novel electrolytes — high LINO,
» directed SEI growth '

' ° 084 |—— 1MLITFSIin DOL:DME
{a L Bl —— 1 M LiTFSI + 0.3 M LiNO3 in DOL:DME
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Designing New Electrolytes

100

Comparison of Standard DOL:DME electrolyte to high
concentration of LINO; in diglyme electrolyte

99
98
97

« LiTFSI added as a co-salt in diglyme

g %L e
= 95 A
% 10 * 0.5 MLiTFSI + 3 M LINO; in diglyme
a:t_: 100 ﬁ * L|N03 acts as a sacrificial SEI-forming
2 L] component
&

E g0l ® ® 1 MLIiTFSI + 0.3 M LiNO3 in DOL:DME  LITFSI provides good Li* transport for
(g) = e 0.5MLIiTFSI + 3 MLiNO3 in diglyme Lj deposition and strlpplng

. « >99.0% CE for ~200 cycles

1. « High CE maintained at >5 mAh/cm?

N 0 160 2(':!0 360 4(;0 500

Cycle #

O 7 B. Adams, J.-G. Zhang et al. in preparation JCESR e ron



Protective Membranes from 2D Materials

New approach: Could we block solvent access to Li?
Create a single ion conducting membrane?

GO Membranes Li+ L=1-10 um

s |am|n§r assembl_y | r—

« chemically functional —_— e d=07nm
» compliant, flexible ~ Li metal

* high shear modulus

DFT & Classical MD
CO0O=18 CO=27

Bulk Modulus (DFT) 40.7 39.9
Bulk Modulus (=B) 32.2 42.8
Shear Modulus (=G) 38.6 45.7
Young’s Modulus (E) 82.7 101.1
Li Shear Modulus ~4

N. Kumar, D. Siegel in preparation
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GO can be modified to reject solvent permeation
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Salt infusion provides for ionic conductivity

LITFSI infusion

Absorbance (a.u.)

1,800 1,600 1,400 1,200

PEG signature C-O-C ether linkage
identified by:

1. band at 950 cm™’

2. broad band between 1,050-1,200 cm™

—— GO-PEG-LITFSI (after immersion) I
—— GO-PEG-LITFSI (before immersion)

neat GO M
——PEG400 NIST

A

b

$ 1 10m

[s]

r

b

a

n

c 10m

e ]

M

1,000
Wavenumber (cm-1)

800 600

1500 1400 1300 1200 1100 1000
Frequency/cm’

Fig. 8. FTIR absorption spectra of aqueous solutions of LiTFSL

LiTFSI signature

1
2
3
4
5
6

. 750 cm™’

. 1051 cm™
. 1150 cm™
. 1192 cm™
.1335cm™
. 1364 cm™

8CF; +vC-S+vS-N  GSalt is well dispersed
v, S-N-S L .

C-SO,~N (bonding) within the intersheet
vsCF3 _ spacing

C-SO,-N (deformation)

V490,
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GO can be modified to support Li* lon

conduction -
Functionalization (acryloyl
chloride) and filtration 250 1

SN 7 7 > 70 ()0 —
GO VO /U ISE IR LTSRN AN 2D /AN %ty
)2 ) /(/) 7 /I )

cross-linker =@~ e, )
TFSI- s el vl VAL 0

Vacuum dry i, UV cross-link
GO ——
S0

LA RSN

by W ap %
S T
2 )

cross-linker —@—— ™y S B
TFSI aPe® S iaipwgs

——

—

Solid state
PtimGO-Lil|Ag (25°C)

50 100 150 200 250 300
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Li morphology is regulated by membrane

First Cycle QH  oH OH

Li* P o § &5
AN ] mm A9
: OH OH OH (p, o] (IJ o CH—CH, © (|) o oo e
= H e e
— n,____ ——— - S wi =
— \
= — — ___/' = OZH OZH 50H CH, CH, :
\:/ O\AI/O /({3| Second Cycle
I
. % 30 30 OH OH
Ll metal EI \All/ CH,—CH,
§ o o c/ . . § o
0.08 pemms MLD films on Li s
50 -

Potential (V)

f‘/ .
0 20 40 60 #0 100 120 140
% s
S R Fa 3
002 ¢ B N/ .
Ru -2 - - -10 / Y 17H|Pw|vm| 4;’:\m ETD
ELE fJ e B S S
0 30 40 60 86 100 120 140
-0.04 ] L 2 {C-om?)
0 20 40 S0 S0 100 120 34C -
Z' {G-em?}
-0-06 ¥ ¥ L] T T ¥ T L]
0 2 4 6 8 10 12 14

Time (h)
« Liforms a compact layer underneath the mGO

« Alternate barrier layers prevent mGO reduction

/282016 | W cr | HAW wo | det | it 4um

5:01:50PM | 500 kv 25pA  12.8um  4.5mm | ETD | 35°

Magellan
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Boehmite as a Barrier Layer to Prevent GO
Reduction

(@) (b)

Pseudo-boehmite—OH groups terminated
with covalent bonded 1.4-butanediol

laminar membranes are formed via filtration

mAIOOLi
Li
—Pseudo-Boehmite Membrane
1.8 nm —Celgard 2400

Intensity
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MGO Membranes Stabilized against Reduction

MeCN,:LiTFSI-TTE, E/S 3 ml/g, C/10, 7 mA/cm?, 0.7 mA/cm?, 55°C

3.0 No sign of Li dep05|t|on on membrane

N
~
I

N
o+
i

A A

Cell Potential (V)
N
[

Post-first discharge
impedance decrease

-
o0
;

1.,5 T T T L] T T ¥ T

s 4/182017 /2017 | HY curr v v
6 8 2 | 11:44:58 AM | 5.00 kv | 13 pA | 256 ym | 4.4 mm | ETD | 35° Magellan

Electrolyte penetrates membrane after first discharge
Morphology indicates liquid coupled
S, F, ... are detected in EDS

Moving >30 mm per half cycle: assembly induced flaws or mechanical strain
with displacement leads to failure
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JCESR'’S LI-S TEAM
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Questions?
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Early Stage Failure Modes at Moderate Rate and

Low E/S

MeCN,:LiTFSI-TTE, E/S 3 ml/g, C/10, 5 mAh/cm?, 0.4

mA/cm?2, 55°C
1200
o o
O Ocontrol (5.2 mg-S / cm2)
2 1000 |
[&]
S O
S 800 | O
o o
2o
gf,: 600 |
2 E Rapid capacity loss
o 400 | |
G O
(]
& 200 ]
o
0 1 | | 1
0 2 4 6 8 10
Cycle
Impedance barrier
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Li deposit

? il
17 HY curr
PM | 5.00 kv | 13 pA

256 pm | 4.4 mm

ETD |-8°
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