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Composites in the Aviation Industry @&

= Modern aircraft uses increasing quantities of composites

= Reduce weight while preserving strength
= Lower fuel consumption: efficiency 1%, emission {,

= Carbon fiber-epoxy materials are heavily used in new design

Commercial Aerospace — Composites Penetration
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Composites and the Safety ) .

= Sandia has been focusing on understanding potential fire
environment
= Fire experiments were performed at various scales and scenarios
= |n 2014, a rubble fire test was performed that replicates an
aircraft accident

= Carbon fiber epoxy composite rubbles were soaked in jet fuel

900 Ib of composite
300 gal of jet fuel

Composite Rubble Fire Test
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Composites and the Safety =

= Sandia has been focusing on understanding potential fire
environment

= Fire experiments were performed at various scales and scenarios

= |n 2014, a rubble fire test was performed that replicates an
aircraft accident

= Carbon fiber epoxy composite rubbles were soaked in jet fuel

= Test lasted 14+ hours before suspended

= Burning is slow but constant due to the
rubble presence

900 Ib of composite
300 gal of jet fuel

= Burning characteristics of soaked composite
needs to be modeled

p> > = Which requires a 3-phase combustion solver




Available Tools & Objectives =W

= SIERRA: Sandia’s engineering mechanics simulation code suite
= Fuego: low-Ma reacting turbulent flow solver
= Aria: low-Re multi-phase reaction & heat transfer solver

= Syrinx: radiation solver
= Several solid-gas, liquid-gas 2-phase combustion models are available

= Full 3-phase combustion capability is currently under development

= QObjective: develop a rigorous solid combustion model for
carbon fiber epoxy
= Revisit solid-gas 2-phase combustion model

= Simulate two experiments



Carbon Fiber Epoxy UL

= 65% carbon fiber, 35% epoxy resin

= Fabric (woven) or uni-tape sheets, usually multiple layers
thick

= Results in the exceptional strength and directional properties
= Thermal characteristics depend on the details of composition
and manufacturing (curing) process
= Woven CYTEC 977-3, cured in 1 atm oven with IM7 fibers, is tested

m Il Carbon Fibers
Epoxy Resin

- 5

Fibersinvarying — > @@@®@®

orientation — I
— 0000

from utsi.edu




TGA Results ) =

Brown et al. (2012)

= 20°C/min 100
= Epoxy pyrolysis generates 80}
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TGA Results ) 2=

Brown et al. (2012)

= 20°C/min 100 (1)
: | — @

= Epoxy pyrolysis generates L N

gaseous fuel and char S
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= |n air, epoxy oxidizes before g a0l o

char and carbon fiber | L=~ Nitrogen
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Reaction Mechanism ) B

= Fitted mechanism with the TGA (Dodd et al. 2013)
= For a solid-gas reaction, defining pre-exponent factor needs a

caution
Gas species: % + V- (pguXcH, + peDVYcH,) = WEpc +0.50) + @
Solid composition: dpsf;# =—0) — Wy
Reaction rates: & = pyYy Ae Ea/RT

W_5 = psYr,sngr,gAe_Ea/RT

1 pyrolysis Epoxy - 0.5 CharA + 0.5 CH, A=3.33E15, E,/R=27200

2 oxid. Epoxy + O, - CharB + CH, A=5.3E15/p,, E,/R=27200
3 oxid. CharA + O, = Residue + CO A=7.58E2/p,, E,/R=10000, AH=12730kJ/kg
4 oxid. CharB + O, - Residue + CO A=7.58E2/p,, E,/R=10000, AH=12730kJ/kg

Soxid.  Carbon-Fiber + O, > Residue + CO, A=3.79E15/p,, E,/R=38000, AH=24770kJ/kg
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TGA Simulation ) .

= Animmovable Lagrangian particle represents TGA sample
= An ODE solver handles the 5-step mechanism
= Fuego result closely matches the TGA degradation rate
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Composite Panel Experiment UL

= Exposed composite panel degrades under a radiant heat
(Hubbard et al., 2011)

= Upper panel is heated up to 800°C

= Duration of visible gasification (smoke) and backside panel
temperature profiles are available

0.184m
3mm thick radiant

composite panel heat source A

distance 0.14m —

0.4m




Numerical Approaches .

= LES with a transport equation of subgrid scale kinetic energy
" = pC Ak cf> p = p(CsA)* |5
= Two approaches are tested

= With or without lateral heat transfer, due to code availability
= Mesh size ¥~ 5mm, total 0.1M grid; no gas-phase reaction

2. Couple with the
multiphase solver (Aria):

1. Directional BC:
panel is discretized
normal to the wall

|

I Composite panel -
— Heat transfer without

No heat transfer directional differentiation 1,
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1. Directional Boundary Condition
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1. Directional Boundary Condition @i

= Phase conversion is active between 240s and 400s

= Minimal conversion continues after 400s
= Experiment reported visible smoke durations as 165-660s and 100-520s
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2. Couple with the Multiphase Solve .

= Phase conversion begins earlier but does not sustain
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Conclusion ) 2=,

= Composite pyrolysis and oxidation procedures were correctly
modeled using CFD solvers

= Parameter definitions were revisited

= TGA and the panel exposed to a radiant heat tests were simulated

= Solid response (TGA degradation) and heat transfers (panel
backside T) were correctly predicted

= Detailed composition of the gas phase release needs further work




