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= (Qravitational confinement 1s clearly

very effective but what can we do on
Earth?

= Magnetic confinement has been studied
since around 1950
= Currently the flagship project is ITER

* Inertial confinement has been
associated with lasers for over 50 years
= The flagship facility is the NIF

* We have made steady progress in both
MCF and ICF over the last half-century




What makes thermonuclear fusion such an (@) &=,
attractive energy source?
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Q = 17.6 MeV = This is a tremendous amount of energy

contained in an incredibly small volume

qus — Q 1020 ~ J X 108 J = ~80% of the energy 1s in neutrons, the
remainder is in the charged a particles

qus ~ (.1 ton!! = But there is (at least) one significant
problem...




What makes thermonuclear fusion such an
attractive energy source?
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We can’t confine the fuel for 10 ps!
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Magnetic confinement fusion utilizes magnetic 9

fields hold a plasma while fusion reactions occur
ITER
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Density 1x 10" cm3
Duration 300-500 s

Magneticfield  0ks




Inertial confinement fusion relies on sufficient Sonda

fusion reactions occurring prior to falling apart
NIF hohlraum
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Density 1x 10" cm3 2-20 x 10%° cm-3
Duration 300-500 s 5-10x 10" s

Magneticfield 100k ok




Magneto-inertial fusion sits in the space -~

between magnetic and inertial confinement fusion
ITER MIF concept NIF hohlraum

Density 1x 10" cm3 1x 102 cm3 2-20 x 10%° cm-3

Duration 300-500 s 1-2x10°%s 5-10 x 101" s

Magneticfield 10k ok




In all concepts, the fuel pressure at stagnation @)
is a key metric of progress

Why 1s Pressure so important for fusion?
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In all concepts, the fuel pressure at stagnation @)
is a key metric of progress

Why 1s Pressure so important for fusion?
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The Z facility combines the multi-MJ Z pulsed-power
accelerator with the multi-kJ Z Beamlet Lasr r(ZBL

= —== = = 10,000 fe2
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1-4 kJ Z Beamlet Laser (ZBL) | -
for radiography and _-_, :
MagLIF fuel preheating

Z. is used to create:

MJ’s of soft x-rays

o’ 2 e [ | B ) “ Q kJ’s of hard x-rays
Up to 22 MJ stored | ‘ S 4 = 195 == & ~kJ of fusion yield
15% coupling to load W e gl F— \

/4 . S ‘ ‘ " Mbar’s of planar drive
1-3 MJ delivered to load FEEal &7 Sl wite FaBE enit ek v : = 10°s-100’s of Mbar’s of
26 MA in 100 ns |
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Z. is a fun and challenging place to conduct high ()
impact experiments

* Shot rate of ~1/day
e ~150 shots/year

£
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* MJ’s of magnetic energy to the load

* Equivalent to detonating a few sticks of dynamite

* Harsh debris, shock, and radiation environment make
fielding experiments unique and challenging



Pulsed-power is all about energy compression in both ot
space and time
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sequence of storage and switching

techniques :
* Voltages are added in series
* Currents are added in parallel
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Magnetically-Driven Cylindrical Implosions are Efficient: () e
Implosion Drive Pressure is Divergent!

2
. Lyin; /30 ou
p=2 —140-( e J [Mbar] P(&Jf(“'v)“j VP

2luo R(t)[mm]

R, R(1) g 11000
/F\ /‘\ - E)
> <> : 71100 2

= pr=~03g/cm” | =
JZT JZT o T =3 keV 110 @
| =
B, B, a3 ]
~_ ~__ B ' 0.1
0 50 100 150 200 250 300

Time [us]

By varying the magnetic pressure pulse shape, liner dimensions, and duration of
drive, Z can access a wide variety of end states




Magnetically-Driven Cylindrical Implosions are Efficient: () e,
Implosion Drive Pressure is Divergent!
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Magnetically-Driven Cylindrical Implosions are Efficient: () e,
Implosion Drive Pressure is Divergent!
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We used pulsed power to create and study () &,
high energy density (HED) matter

HED regime (P > 1 Mbar or E > 100 kJ/cm?)

HED conditions are strange on
earth, but common in the

universe
Internal Metallic H Z Machine
Energy of in Jupiter’s magnetic Center of  Burning ICF
Baseball Dynamite H atom core pressure Sun plasma
%‘% Electron b e
7~ 7 . /_\I °
p ’¥§ i°/I1/\‘?.>55nergy
10-°> Mbar 0.1 Mbar 10 Mbar 30 Mbar 100 Mbar 250,000 800,000
Mbar Mbar

Z can access the HED regime »




We used pulsed power to create and study
high energy density (HED) matter

Sandia

HED condit
earth, but c(q :
universe = A baseball weighs 0.145 kg
= Traveling at 100 mph it has a
Baseball kinetic energy of ~ 150 J

= |ts volume is ~ 200 cm?3

* Energy density ~ 1J/cm3
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[ring ICF
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Neutron
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We used pulsed power to create and study S
high energy density (HED) matter

HED condit
earth, but c(
universe

Baseball

10-° Mbar

= Astick of dynamite has a stored |
energy of about 1-2 MJ
= A stick of dynamite is 20 cm long
and 3.2 cm in diameter ['ning ICF
= Volume =161 cm?3 3Iasma: eeeeee
Q
@
= Energy density ~10 kJ/cm?3 g \@
800,000
Mbar

Z CdIT aolCToS UIC T I |C'9'I1'ITC 18




We used pulsed power to create and study S
high energy density (HED) matter

HED condit
earth, but c{ Internal Energy of H I
universe Ejectmnatom = The electron is bound to the proton
with an energy of 13 eV
: . [ring ICF
Baseball = The atomic radius is 53 pm lasma
= Volume ~102° cm3 s
. \Ka\’—b Energy
* Energy density ~ 1,000 kJ/cm3 zﬁg’\@
10> Mbar 800,000
Mbar

Z CdIT aolCToS UIC T I |C'9'I1'ITC 19




We used pulsed power to create and study (7)o
high energy density (HED) matter

o Petawatt Hot Neutron 0 kJ /Cm3
HED conditions ¢ - Laser Star Interiors ‘ )
earth, but commg 10°° = Plasmas
universe } HED Regime = 1 Mbar

Tokamaks
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)
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A quick review of traditional ICF will help us s,
understand MIF

= Start with a sphere containing DT

21




A quick review of traditional ICF will help us s,

understand MIF
- T =~
7 ~
/
/
\
\
\
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= Start with a sphere containing DT

= Implode the sphere

= Compress radius by 30 (volume by
27,000)

= Series of shocks heat the center
(hot spot)




A quick review of traditional ICF will help us s,
understand MIF

= Start with a sphere containing DT

Zooming in = Implode the sphere
= Compress radius by 30 (volume by
AIpha 27,000)
&\artlc}\ = Series of shocks heat the center
(hot spot)
g = Fuel in hot spot undergoes fusion
/ = Fusion products heat surrounding
N - dense fuel
= With a favorable power balance, a
Cooler, chain reaction occurs

dense shell :
= For parameters of interest on the NIF,

this requires Py > 300 Gbar and p_, 4 >
1000 g/cm? )2




ICF has requirements on fuel temperature e,
and areal density for gains to exceed losses

o0y = There is a minimum
fuel temperature of
S 407 about 4.5 keV
) - -
=<, GOé L cond L rad Z 0 = This 1s where fusion
g 30 heating outpaces
"§ radiation losses
qé-’. = The minimum fuel
O 20 areal density is around
g 0.2 g/ cm?
w107 0 MG-cm = Traditional ICF
concepts attempt to
0 ST operate 1n this
-4 -3 -2 -1 0
10 10 10 10 10 minimum

pR [glcmz] 24




Magneto-inertial fusion (MIF) utilizes magnetic e,
fields to relax the stagnation requirements of ICF

>0r = Applying a magnetic
field opens up a
> 40 larger region of
= parameter space
% 30 = This is sufficient field
% to neglect electron
3 20 thermal conduction
2 loss
§ 101 = Note the minimum
temperature does not
change because it 1s
100-4 | 1 03 o 1 02 o 1 01 o 100 driven by radiation
oR [g/cm?] losses )




Magneto-inertial fusion (MIF) utilizes magnetic e,
fields to relax the stagnation requirements of ICF

S0 = This is sufficient field
s ; to neglect 1on thermal
> 40 S £ conduction losses
o 2 S/
2 30 S s/ = The Larmor radius of
] fusion alphas is
£ 20 approximately the
% radius of the fuel
£ 10}
O-4 """_3 II """'_2 II """'_1 II H””IO
10 10 10 10 10
pR [g/cm”] 2




Magneto-inertial fusion (MIF) utilizes magnetic e,
fields to relax the stagnation requirements of ICF

507

LN
o

__— = There are dramatic
f gains for small
changes in the field

W
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N
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Fuel Temperature [keV]
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radius 1s slightly less
than the fuel radius

S; O when the Larmor
S ~ §
0.33 MG-cm [ S

= Substantial increase
in the fusion energy
L (Wbl trapped in the fuel
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o
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Magneto-inertial fusion (MIF) utilizes magnetic e,
fields to relax the stagnation requirements of ICF

0 = As field increases,
s/ _ confinement of the
> 40 (;’ £ charged fusion-
X, 5 ég products is achieved
= a0 03 S/ 5 through the magnetic
L S/ field rather than the
2 areal densit
£ 20 4
|_
E
w 10
O-4 3 """'_2 | IH””I-'] | III””IO
10 10 10 10 10
pR [g/cm”] 28




Magneto-inertial fusion (MIF) utilizes magnetic e,
fields to relax the stagnation requirements of ICF

>0 = When the Larmor
radius 1s about half of
> 40 the fuel radius, the
X, effect begins to
j;j 30 saturate
©
3
£ 20 * This means there is
- an optimal field for a
é 10 given fuel.
0.6 MG-cm configuration
0-4 II ----"'_3 II IHMI-Z II ------'_1 II H””IO
10 10 10 10 10
pR [g/cm”] 2




MagLIF!!-2l is an MIF concept that relies on three B

stages to heat, compress and confine fusion fuel
Stage 1: Magnetization

= Be liner containing fusion

fuel

= D2 gas ~mg/cc (n/n ., < 0.1)

crit

= Axial magnetic field is
applied to target
= 10-30T
" ~ms risetime
= Z current starts creating an
azimuthal drive field

Magnetization

[1]1 S. A. Slutz, et al., Phys. Plasmas 17 056303 (2010)
[2] A.B. Sefkow, et al., Phys. Plasmas, 21 072711 (2014)



MagLIF!!-2l is an MIF concept that relies on three B

stages to heat, compress and confine fusion fuel
Stage 2: Laser Heating

* Liner begins to compress

= OD is moving but ID is stationary

= Laser heats the fuel
= 7,~100s of eV

= Liner ID begins to implode

= Simulations indicate that
fuel conditions isotropize
over the 10s of ns of the
implosion

Laser heating

[1]1 S. A. Slutz, et al., Phys. Plasmas 17 056303 (2010)
[2] A.B. Sefkow, et al., Phys. Plasmas, 21 072711 (2014)



MagLIF!!-2l is an MIF concept that relies on three B
stages to heat, compress and confine fusion fuel

Stage 3: Compression

= Axial magnetic field insulates
fuel from liner throughout
implosion

= Field increases substantially through
magnetic flux compression

* Fuel is heated through PdV
work to keV temperatures

= Liner stagnates

| = Plasma pressure exceeds drive
Compression pressure

[1]1 S. A. Slutz, et al., Phys. Plasmas 17 056303 (2010)
[2] A.B. Sefkow, et al., Phys. Plasmas, 21 072711 (2014)



Sandia

Magnetization and preheat reduce peak velocity b
required for ignition compared to traditional ICF

= Magnetization confines 3.5
MeV a-particles at lower pR

= Preheating + magnetization
allows 1gnition temperature to
be reached at a lower
implosion velocity

= (Calculations show MagLIF
scales to high yield and gain*®

[1]S. A. Slutz, et al., Phys. Plasmas 17 056303 (2010)
[2] S. A. Slutz. and R.A. Vesey, PRL 108, 025003 (2012)




MagLIF experiments are complicated to field e,

Magnetization

* 10-30 T axial B-field
* 3 ms risetime
* ~1 mg/cm? initial density

Laser Heating

*1-4kJ, 1-4 ns

* 20, f/10 beam

* ~50 ns from
preheat to stagnation

Implosion and
Stagnation

* CR =25-40

* Burn duration 1-2 ns

* Flux compression >>100x B,

* pR; ~ 0.01 g/cm?, pL; ~2 g/cm?

B, Coil Support
Structure

Power Feed

B

Z-Beamlet Laser
(ZBL)

Be Liner/Target

R

B, Field
Coils

-

Fuel Fill Line

S. A. Slutz, et al., Phys. Plasmas 17 056303 (2010)
A.B. Sefkow, et al., Phys. Plasmas, 21 072711 (2014)



We have demonstrated key aspects of e
magneto-lnertlal fusion on Sandia’s Z facility

Ar Imager: Stagn

= Qur extensive suite
of diagnostics allow
us to measure the
fuel temperature,
density, volume,

Monochromatic [R

X-ray Imaging [ ‘ 6 Z28I39 |2? mils Kapton . .
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1 ke b i sat's: Lo 3.095 31 [3.1]05 3.1 t|me-of-f||ght
i+ ‘“ T aghuens Yop = 3.2 x 10" £ 20% el . :
ERE iR R R : Tseres = X-ray imaging and
E 0_: ' Fe K-edge _ :? d213(110533k A t
i | : A spectroscopy
£727 Lo i Neutron Spectrum o .
L] ey J it o (. = Radiated power
144 X-ray Spectroscopy - _ — I i\
' - E M oy and energy
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X-ray diodes and time-resolved x-ray pinhole g gs
images show the fuel radiating at stagnation

Neut B Ti . .
..... eutron Zang ';me- " = Heavily-filtered diodes detect a 2 ns

1 L
S 08| FWHM burst of x-rays
206t
< i
£ 04r .. :
S Ll * Coincides with the neutron bang
0~ — time measurement to within timing
3091 3093 309_5 3097 3099 3101 . .
Time [ns] | - uncertainties
E' F :0:9
E .
5 .. = Filtered pinhole images during the
o -~ X-ray burst show a narrow emission
< . column
-1 0 1 1 0 1 1 0 1 1 0 1 0
36

Transverse Distance [mm]

M. R. Gomez, et al., Phys. Rev. Lett. 113, 155003 (2014).



Our spherical crystal imaging system was repurposeds) s,

Laboratories

to record x-ray emission from the fuel

1
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A
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B
o

10 5

-05 0 05 -0.2 0 0.2
Transverse Position [mm] Transverse Position [mm]

Hot fuel emission at stagnation gives
information about the CR and uniformity of
the plasma

Hot fuel radius 1s CR ~45

Helical structure to the emission column

Intensity fluctuations a combination of

emission and opacity variations
37

M. R. Gomez, et al., Phys. Rev. Lett. 113, 155003 (2014).



The primary neutron increases as the ion o,
temperature increases

* Yield and 1on temperature are
related by the fusion reaction rate

* Experimental values roughly
follow the trajectory of the

. 1 A-style (Al) . .
A-style (Be) fusion reaction rate
)

DD Neutron Yield

B-stylce (Al
B-style (Be

= This 1s expected for a
ton Temperature [keV] thermonuclear plasma

38




Despite early success, there are a number of @) s,
unknowns

" According to the models, we have a lot of room for improvement
= Current best yield is 4x10'? DD neutrons

= Think >10'* DD neutrons in possible on Z

= What keeps me up at night?
= Can we keep the fuel clean enough to stay hot?
= Will instabilities shred the liner before it can compress the fuel?
= Can we effectively heat the fuel with a laser?

= Can we efficiently compress the magnetic field to the required strength?




The fuel in these experiments is deuterium o,

gas: one branch produces a neutron...

Primary Reactions

He-3
Deuteron

\ /
e ™~

Deuteron

2.45 MeV

40




Sandia

...and the other branch produces a triton...

Primary Reactions

Deuteron Triton

1.01 MeV

\
_
\
_

/\ -/

Deuteron

41



...Which can fuse with a deuteron to produce s

a higher energy neutron
Primary Reactions

Secondary Reaction
Deuteron

Alpha

~ e

1.01 MeV
12-17 MeV

\
_
\
_

/\ -/

42



We measure both the primary and secondary g

neutrons
Primary Reactions

~— _—— Secondary Reaction
—
S
/
L 1
— ~~

43




Secondary neutrons are produced when o,
primary tritons react before exiting the fuel

No B-field = High aspect ratio stagnation geometry

A = Height >> radius

7.5 mm




Secondary neutrons are produced when o,
primary tritons react before exiting the fuel

No B-field = High aspect ratio stagnation geometry

A = Height >> radius

= Consider 2 cases:

= 1) Triton is created traveling radially

= Very little probability of interacting prior to
escaping

7.5 mm

Triton
escapes

v

—
0.1 mm

45




Secondary neutrons are produced when o,
primary tritons react before exiting the fuel

No B-field = High aspect ratio stagnation geometry

= Height >> radius

= Consider 2 cases:

= 1) Triton is created traveling radially

= Very little probability of interacting prior to

Triton escaping
reacts : . . :
= 2) Triton 1s created traveling axially

Triton
escapes

= High probability of fusion prior to escaping

—
0.1 mm

46




The secondary neutron energy spectra are notgy e,

expected to be isotropic

A = Consider 3 detector locations:
1 - /\ - - = Radial

= Neutrons at nominal energy

o
oo

o
o

Norm. Intensity

©
N

Q neutron

Triton
reacts

\

14 16 18
Energy [MeV]

N\
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The secondary neutron energy spectra are notgy e,

expected to be isotropic
A = Consider 3 detector locations:

neutron .
1 - T {\ - = Radial

o
N

0.8| = Neutrons at nominal energy
% 0] = Axial (triton moving towards)
E = Neutrons shifted to higher
Q s 4 energy
Triton ° ]

reacts

o

12 14 16 18
Energy [MeV]

RN
o




The secondary neutron energy spectra are notgy e,
expected to be isotropic

A = Consider 3 detector locations:
1 (\ T = Radial
0.8 = Neutrons at nominal energy
%’ ol = Axial (triton moving towards)
E = Neutrons shifted to higher
Q 5 %4 energy
0.2 = Axial (triton moving away)

Triton
reacts

L = Neutrons shifted to lower
12 14 16 18
Energy [MeV] cenergy

O
o




The secondary neutron energy spectra are notgy e,

expected to be isotropic
A = Consider 3 detector locations:

neutron 1 | {\ | = Radial
= Neutrons at nominal energy
= Axial (triton moving towards)

= Neutrons shifted to higher
4 ' energy

Triton 02 M U | = Axial (triton moving away)
reacts 0 = Neutrons shifted to lower
energy

10 12 14 16 18
Energy [MeV]
= Axial detectors will have
double peaked structure

0.8

Norm. Intensity

Q neutron

50




Adding a strong enough axial magnetic field gy
allows tritons to interact for any initial direction
High B-field = Consider 2 cases:

= 1) Triton is created traveling axially
= Axial field has little impact on trajectory
= Triton has a high probability of fusion

= 2) Triton is created traveling radially

= Axial magnetic field traps triton within fuel

. volume
Triton

reacts = Triton has a high probability of fusion

= With a high enough magnetic field, all tritons
have equal probability of secondary fusion




Magnetizing the tritons modifies their e
trajectories, imprinting on DT spectrum

DT/DD Ratio DT Neutron Spectrum
Triton Trajectories T R L2 F ' ' ' ' ' T
— Axial
— Radial
1072
[~
10_3 — ] . ] ] OOI L L 1 1 L L L
10° 106 1 12 13 14 15 16 17 18
BR [G-cm] Energy [MeV]
= Magnetization serves to: = Axial redirection forces tritons to see pZ instead of pR
= Trap tritons = pZ=AR*pR, AR>>1
= Direct them axially = broadens the velocity distribution of tritons that have a

- . significant probability of reaction
= Execute helical orbits g p y

At large BR, helical orbits induce Doppler splitting in the radial view 52




Magnetizing the tritons modifies their e
trajectories, imprinting on DT spectrum

DT/DD Ratio DT Neutron Spectrum
Triton Trajectories T R L2 F ' ' ' ' ' T
— Axial
— Radial
1072
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10° 106 1 12 13 14 15 16 17 18
BR [G-cm] Energy [MeV]
= Magnetization serves to: = Axial redirection forces tritons to see pZ instead of pR
= Trap tritons = pZ=AR*pR, AR>>1
= Direct them axially = broadens the velocity distribution of tritons that have a

- . significant probability of reaction
= Execute helical orbits g p y

At large BR, helical orbits induce Doppler splitting in the radial view 53




Magnetizing the tritons modifies their e
trajectories, imprinting on DT spectrum

DT/DD Ratio DT Neutron Spectrum
Triton Trajectories T R L2 F ' ' ' ' ' T
— Axial
—— Radial -
1072
[~
10_3 — ] . ] ] OOI L L 1 1 L L L
10° 106 1 12 13 14 15 16 17 18
BR [G-cm] Energy [MeV]
= Magnetization serves to: = Axial redirection forces tritons to see pZ instead of pR
= Trap tritons = pZ=AR*pR, AR>>1
= Direct them axially = broadens the velocity distribution of tritons that have a

- . significant probability of reaction
= Execute helical orbits g p y

At large BR, helical orbits induce Doppler splitting in the radial view 54




Magnetizing the tritons modifies their e
trajectories, imprinting on DT spectrum

DT/DD Ratio DT Neutron Spectrum
Triton Trajectories T R L2 F ' ' ' ' ' ' B
— Axial
— 1.0 — Radial
e
Q
N
< 0.8
1072 =
—
[~ > 0.6
% 0.4
=
< 02
10_3 ] . ] ] OOI L L 1 1 L L L
10° 106 1 12 13 14 15 16 17 18
BR [G-cm] Energy [MeV]
= Magnetization serves to: = Axial redirection forces tritons to see pZ instead of pR
= Trap tritons = pZ=AR*pR, AR>>1
= Direct them axially = broadens the velocity distribution of tritons that have a

- . significant probability of reaction
= Execute helical orbits g p y

At large BR, helical orbits induce Doppler splitting in the radial view 55




Magnetizing the tritons modifies their e
trajectories, imprinting on DT spectrum

DT/DD Ratio DT Neutron Spectrum
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— 1.0 — Radial
e
Q
N
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1072 =
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% 0.4
=
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= Magnetization serves to: = Axial redirection forces tritons to see pZ instead of pR
= Trap tritons = pZ=AR*pR, AR>>1
= Direct them axially = broadens the velocity distribution of tritons that have a

- . significant probability of reaction
= Execute helical orbits g p y

At large BR, helical orbits induce Doppler splitting in the radial view 56




DT Spectra are used in conjunction with measured Soncio
DT/DD ratio to constrain the stagnation BR

Axial
T . | Ir1=30keV = Not a rigorous fit to the spectra
{1+ p=0.5g/c D :
{« R=50-100 um = (Considering only the high energy
1« pR=2-5mg/cm? half of the spectra (scattering)
|+ pZ~0.3 g/em® = Inreasonable agreement with

integrated 2D simulations!?!
(B.R)stag = 5.3 x 10°G - cm
Ft ~ 55%

Inferred From Spectra

0.0 . . ! ! ! Axial nonuniformities
11 12 13 14 15 16 17 18 .
Radial o g 10-2 | and azimuthal field are
W T | — 02 Mgem i g the biggest missing
0'8 —  0.42 Mg-cm E ) features that can
% 06 T OB Mgem] g ! contribute to the
gj 0.4 1077 (BR)ia! modeled spectra
0.2 et . . — 1
5 6
0.0 . . . . . 10 10
112 13 14 15 16 1T 18 BR [G-cm]

Energy [MeV]

BR =~ 4(£0.7) x 10° G - cm ~ 17 x (BR),
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Experimentally inferred stagnation BR indicates we are Soie
trapping 1 MeV tritons and magnetizing electrons
107 -

1
Triton deposition
= Modeling suggests we are depositing >35% of . 0.8
the triton energy k: 06
= Scales to >40% a deposition N

I 2 04
BR ~4 x 10°G -cm — — ~ 1.5 — 2 B 0z

T :

T ~ 1.077’t

Alpha deposition

= Magnetizing fast tritons implies electrons are
magnetized as well

WetTte ~ WeeTee
MagLIF works! We were able to compress scaled—> (@)

flux, preheat the plasma and keep it hot and
magnetize the burn products!




X-ray spectroscopy has allowed us to determine gnta,
that ”mix” is a significant limiting factor

z2839 -bksub -magcorr -energycorr

LEH : 10f~ FeHe- ' | il L
window _ 0 ;complex ; Py i “k‘,‘ i
- _ sk -: | , A la
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x |
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mm 6500 7000 7500 8000

Energy [eV]

o
|

——J i = Spherical crystal image shows a narrow plasma column (r=50um) with a

o™ slight helical structure
. \Q«@O = High spectral resolution, high sensitivity spectroscopy shows us Fe
A impurities mixed into the fuel
«,\z z\;:ﬂ — = This allows us to determine T,=1.5-2 keV, n.=1¢23 cm™ and f_. =0.5-1%

T S = Mix from Be is at a significant, but manageable level s
Neutron Yield

E.C. Harding et al., Rev. Sci. Inst. 86, 043504 (2015)




Mix degrades performance by enhancing e,
losses due to radiation

1

At ~ 50 ns Pfusion

0.8

0.6[

= fis the mix fraction
= 7 1s the charge of the mix species

= [f contaminants get into the hot spot early, they have a long
time to radiate heat away before stagnation

= The radiated power increases like P2

. . 5
= Pressure increases like (r/r,)?3

Laser heating

Compression 60




Mix degrades performance by enhancing e,
losses due to radiation

1.00 e—hv/T
; _Jj T5/2
)
2
eRyZ = /T
S 0.10 -
> .
C ) rly, they have a long
0.01 VTR P I - tion
0.001 0.010 0.100 1.000 10.000
% Dopant Atomic
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Sandia

Looking at the hot spot energy shows that we lose a Natonsl_
significant amount of energy to mix

* 3 3 YppV
Bus = 5 PusV = 5((2) + 1>\/ o
7

= A 2
0 ,rd/r <O-/U> DD / T Magnetic insulation
14 I A \4 0
N Be [~~~ " - —
T | w _ Eus = Eias + PdV — Eraq — Econa”
| ] I
55 10 1.5 kJ
é 8 b L 5.2 kJ - For same style targets:
5 6t Fr.s — Const.
w4 PdV — Const.
0 d d The difference between inferred E for like-
A Style B Style targets is due entirely to the different radiative
properties of Al and Be
Lose up to ~50% of our energy to mix!! — _ Al pBe
b Jo. . sy AFEps = AE g = Erad Erad
More when considering window mix as well

*S. P. Regan et al. Phys. Rev. Lett. 117, 025001



Looking at the ensemble of data, we are able to see e
some trends and some potential avenues for

improvement

0.4% Kapton or 0.6% Be

1 2
lon Temperature [keV]

' 00 —hv/T ;. dh
— ]:Tx(hu)e_Tf (7)) ¢ ZJ— Y
Ypp 0 (ov) JD Vhv

Ji _ o Ao 2 pyzi
JD CA T

= Attempts to increase the amount of laser energy
coupled to the gas have led to signatures of higher
mix

= Replacing Al fuel-facing components with Be
improves performance

= Coupling more current to the load tends to improve

neutron yield and temperature .




MagLIF shows promise as a route to high ~-
fusion yields in the laboratory, but we have a
long road ahead

= We have demonstrated the key aspects of the concept:

= Preheat, compression, magnetic insulation, and trapping of charged fusion products

= We have many improvements to make
= We must solve the mix problem

= Couple more laser energy into the fuel, without generating more mix

" There 1s a lot of room for improvement in diagnostics and analysis

= Interpreting neutron diagnostics on Z is extremely challenging

= We have a ton of work to do and not enough people to do it!
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Fusion energy is a worthy goal, but it is a long ways () &= _
away. There are other exciting things we can do with
large laboratory fusion yields

= Excited state nuclear physics

= Multi-neutron reactions are possible with high enough neutron flux

= The astrophysical r-process may be within reach

= The theorized process that allows high atomic number elements to be created in supernovae

= We can study other fusion reactions, particularly those of importance to stellar energy
balance and evolution (*He-*He and the p-p cycle, parts of the CNO cycle, etc.)

= Neutron and photon fluxes similar to those present in stellar cores can be created

= Behavior of materials under intense neutron and x-ray radiation

= Important for fusion reactor development and space travel
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