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Motivation

* For fluid-structure interaction (FSI) applications, must be able to predict the
pressure loading on a surface due to a turbulent flow
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DNS Data Set
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L esose—

* Mach 2.0 compressible flat plate turbulent boundary layer
* Low-dissipation 5t order upwind biased flux-reconstruction scheme
* Fourth order explicit Runge Kutta time integration
 100.7 M mesh cells
* Near wall resolution: Ax* <5, Ay*< 0.2, Az* <4
* 1075 < Rey <1310
* Run for > 1200t (where t =6,/ U..)



DNS “Verification”
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« Good agreement of mean velocity and Reynolds stress
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What is Machine Learninge

e Data-driven algorithms to discern patterns and make predictions on big,
high-dimensional data

* Linear regression, support vector machines, neural networks
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Machine Learning Algorithms

Random Forest

X2 <0.4

Input Layer Output Layer

Hidden Layers




Machine Learning Framework
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Frequency-Dependence of Random Forest "‘
AcCcuracy “’
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e Each split in decision tree is based
* Feature importance is based on h¢
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Random Forest Feature Importance (!:
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Log PSD

Neural Network Predictions
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Developed machine learning f
pressure PSD (or other inputs
Evaluated two different ML alj
e Random Forest provided
perceptron neural netwo

Evaluated machine learning p
distances
Data out to y* =100 allo
Higher frequencies are hz
the wall
These results suggest tha
wall model for the pressu




Next Steps

ain and validate acro
different flow configurati

* Given WMLES data, try tc

e Evaluate more complex
improved neural networ
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Questions?e




