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Motivation
Goal:	Maintain	an	ionic	gradient	without	external	stimulus,	

and	release	this	gradient	on	demand	via	voltage	pulse.
§ No	constant	voltage,	light,	chemical,	etc.	needed.
§ Chemical	separations,	power	sources,	drug	delivery

Strategy:	Ionic	diode	with	switchable	ionic	selectivity
§ Diode:	charge	moves	in	one	direction
§ Ionic	selectivity:	only	1	type	of	charge	(+/-)	can	move	
§ Switch	ionic	selectivity	to	release	ionic	gradient

2

How can we create a membrane with stable, 
switchable ionic selectivity?

1 M NaCl

membrane

0.1 mM NaCl



Ionic	Selectivity	in	Nanopores

3

Pore wall
- ----+ + + + +

--
-
-

- -
+ +-

+
-

-- - - -+++++
- -

-
-

-- ++ -
+

-

§ Electrochemical	double	
layer	at	the	solid-liquid	
interface
§ pore	diameter
§ wall	surface	charge



Ionic	Selectivity	in	Nanopores
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Pore wall
- ----+ + + + +

-- - - -+++++

Overlapping double layers facilitate highly ion-selective transport.

Cl-

Na+

§ Double	layer	size	controls	ion	distribution	in	nanopore
§ ~10	nm	@	0.1	mM
§ <1	nm	@	1	M

Na+



Gold-Plated	Polycarbonate	Nanopores
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§ Polycarbonate	films	5-10	μm	thick	ion-tracked	by	Sterlitech Corp.

§ Chemically	etch	ion	tracks	under	pressure1
§ +300	Pa	à cones	275	nm	x	3	nm
§ -20	Pa	à cylinders	42	± 6	nm	

§ Metallize	with	electroless gold2,3
§ 6	nm	diameter	cylinders

1L.J. Small, D.R. Wheeler, and E.D. Spoerke, RSC Adv., 4 (2014) 5499.  US Patent No. 9,387,444 B2
2C. R. Martin et. al, Adv. Mater., 2001, 13, 1351–1362. 3L.J. Small, D.R. Wheeler, and E.D. Spoerke, Nanoscale, 2015, 7, 16909.

200 nm200 nm 100 nm

acid height 
varies



Evaluating	Ionic	Selectivity
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§ Measure	the	voltage	when	the	membrane	separates	different	
salt	concentrations
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Fig. 6 Carbon 1s XPS spectra characteristic of the surfaces in Fig. 1,
assembled onto gold-coated glass slides.

ated with aryl carbon (C-C aryl, 284.6 eV), carbon singly bonded
to oxygen (C-O, 285.8 eV), and carbon bonded to nitrogen (C-
N, 286.3 eV). The ratio of these peak areas is nearly 10:4:3 (C-C
aryl : C-O : C-N), in concurrence with the molecular formula of
2a. Upon oxidation of the methoxy groups of 2a to reveal the
quinone of 2b , a higher energy peak consistent with carbon dou-
bly bonded to oxygen in the quinone appears (C=O, 287.9 eV)52.
Additionally, the spectra of 2b may be better fitted if the C-O peak
is replaced by a C-C aliphatic peak (C-C aliphatic, 285.5 eV), in
agreement with the transition of 2a to 2b . XPS spectra of 2g ap-
pear similar to those of 2b ; ambient oxygen likely oxidized the
hydroquinone back to a quinone during the hour between elec-
trochemical switching and XPS measurements.

Carbon 1s spectra for 3a may be decomposed into peaks
attributed to aryl carbon, aliphatic carbon, and carbon singly
bonded to oxygen, all at the peak locations previously identified.
Additionally, a high energy peak characteristic of the carbon dou-
ble bonded to oxygen in the lactone of 3a is seen (O-C=O, 288.5
eV). The area of these peaks are in agreement with the molecular

formula of 3a. Upon oxidation to reveal the carboxylic acid in
3b , the O-C=O peak shifts slightly to 288.8 eV, due to the higher
binding energy afforded by the carboxylic acid as compared to the
lactone34,52. When reduced to 3g, the O-C=O peak shifts back to
288.5 eV, indicative of the lactone.

3.3 Functional Demonstration of Switchable Ionic Selectiv-
ity

Having confirmed the presence of all electrochemically switchable
states outlined in Fig. 1 via the collective results of cyclic voltam-
metry, contact angle, GA-FTIR, and XPS the ability of these func-
tionalized nanopores to enable electrochemically tunable charge
transport was evaluated across varying concentration differences
of aqueous NaCl. The ionic selectivity of a membrane may be
evaluated by measuring the transmembrane voltage which arises
when different concentrations of salt are placed on each side of
the membrane. The transmembrane voltage (V

m

, in volts) at room
temperature for a singly charged 1:1 salt may be described by the
following variant of the Nernst equation, widely applied to ion-
selective electrodes1:

V

m

= 0.059 · (t+� t�) · log

a

right

a

le f t

(1)

Here a relates the activity of the salt solution on the left or right
side of the membrane. NaCl concentrations have been converted
to activities using the activity coefficients in Ref.53. t+ and t� are
the transference numbers, with values between 0 and 1, inclu-
sive, that relate a membrane’s ability to transport cations (t+) or
anions (t�). Zero indicates no transport, and 1 indicates ideal
transport. Thus, an ideally cation-selective membrane (t+ = 1,
t� = 0) is expected to provide +59 mV per order of magnitude
difference in salt activity.

The selectivity of the membrane may be influenced by sev-
eral properties of the nanopores: surface charge, salt activ-
ity, nanopore diameter, and nanopore shape. Nanopore surface
charge and salt activity dictate the electrical field strength and
size of the double layer5,6. Excess negative (positive) surface
charge creates a cation (anion) selective membrane, while the
absence of surface charge precludes double layer formation. A
lower salt activity generally creates a double layer which extends
farther from the surface. As a first order approximation, the
Gouy-Chapman solution to the Boltzmann equation predicts a De-
bye screening length of 12 nm, decreasing to 0.3 nm, as the salt
concentration increases from 0.1 mM to 1 M. By decreasing the
nanopore diameter, the amount of overlap of the double layer
increases at a given salt activity. This decreased pore size will
generally enhance the electrostatic screening, all other factors
being equal54. Control over nanopore shape to include asym-
metric geometries such as cones allows for the creation of ionic
diodes37,39,55–60.

The ionic selectivity of cylindrical nanopores before gold plat-
ing (polycarbonate), after gold plating, and functionalized with
1a, 2a, or 3a are presented in Fig. 7A. Error bars relate exper-
imental variability for membranes synthesized under the same
conditions. As indicated by Eq. 1, a large positive (negative)

1–11 | 7

t+ = cation transference number
t- = anion transference number

Vm, in Volts
25 °C
1:1 salt
Measured by Ag/AgCl wires



Ionic	Selectivity	of	Nanoporous
Polycarbonate
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§ Measure	the	voltage	when	the	membrane	separates	different	
salt	concentrations
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Fig. 6 Carbon 1s XPS spectra characteristic of the surfaces in Fig. 1,
assembled onto gold-coated glass slides.

ated with aryl carbon (C-C aryl, 284.6 eV), carbon singly bonded
to oxygen (C-O, 285.8 eV), and carbon bonded to nitrogen (C-
N, 286.3 eV). The ratio of these peak areas is nearly 10:4:3 (C-C
aryl : C-O : C-N), in concurrence with the molecular formula of
2a. Upon oxidation of the methoxy groups of 2a to reveal the
quinone of 2b , a higher energy peak consistent with carbon dou-
bly bonded to oxygen in the quinone appears (C=O, 287.9 eV)52.
Additionally, the spectra of 2b may be better fitted if the C-O peak
is replaced by a C-C aliphatic peak (C-C aliphatic, 285.5 eV), in
agreement with the transition of 2a to 2b . XPS spectra of 2g ap-
pear similar to those of 2b ; ambient oxygen likely oxidized the
hydroquinone back to a quinone during the hour between elec-
trochemical switching and XPS measurements.

Carbon 1s spectra for 3a may be decomposed into peaks
attributed to aryl carbon, aliphatic carbon, and carbon singly
bonded to oxygen, all at the peak locations previously identified.
Additionally, a high energy peak characteristic of the carbon dou-
ble bonded to oxygen in the lactone of 3a is seen (O-C=O, 288.5
eV). The area of these peaks are in agreement with the molecular

formula of 3a. Upon oxidation to reveal the carboxylic acid in
3b , the O-C=O peak shifts slightly to 288.8 eV, due to the higher
binding energy afforded by the carboxylic acid as compared to the
lactone34,52. When reduced to 3g, the O-C=O peak shifts back to
288.5 eV, indicative of the lactone.

3.3 Functional Demonstration of Switchable Ionic Selectiv-
ity

Having confirmed the presence of all electrochemically switchable
states outlined in Fig. 1 via the collective results of cyclic voltam-
metry, contact angle, GA-FTIR, and XPS the ability of these func-
tionalized nanopores to enable electrochemically tunable charge
transport was evaluated across varying concentration differences
of aqueous NaCl. The ionic selectivity of a membrane may be
evaluated by measuring the transmembrane voltage which arises
when different concentrations of salt are placed on each side of
the membrane. The transmembrane voltage (V

m

, in volts) at room
temperature for a singly charged 1:1 salt may be described by the
following variant of the Nernst equation, widely applied to ion-
selective electrodes1:

V

m

= 0.059 · (t+� t�) · log

a

right

a

le f t

(1)

Here a relates the activity of the salt solution on the left or right
side of the membrane. NaCl concentrations have been converted
to activities using the activity coefficients in Ref.53. t+ and t� are
the transference numbers, with values between 0 and 1, inclu-
sive, that relate a membrane’s ability to transport cations (t+) or
anions (t�). Zero indicates no transport, and 1 indicates ideal
transport. Thus, an ideally cation-selective membrane (t+ = 1,
t� = 0) is expected to provide +59 mV per order of magnitude
difference in salt activity.

The selectivity of the membrane may be influenced by sev-
eral properties of the nanopores: surface charge, salt activ-
ity, nanopore diameter, and nanopore shape. Nanopore surface
charge and salt activity dictate the electrical field strength and
size of the double layer5,6. Excess negative (positive) surface
charge creates a cation (anion) selective membrane, while the
absence of surface charge precludes double layer formation. A
lower salt activity generally creates a double layer which extends
farther from the surface. As a first order approximation, the
Gouy-Chapman solution to the Boltzmann equation predicts a De-
bye screening length of 12 nm, decreasing to 0.3 nm, as the salt
concentration increases from 0.1 mM to 1 M. By decreasing the
nanopore diameter, the amount of overlap of the double layer
increases at a given salt activity. This decreased pore size will
generally enhance the electrostatic screening, all other factors
being equal54. Control over nanopore shape to include asym-
metric geometries such as cones allows for the creation of ionic
diodes37,39,55–60.

The ionic selectivity of cylindrical nanopores before gold plat-
ing (polycarbonate), after gold plating, and functionalized with
1a, 2a, or 3a are presented in Fig. 7A. Error bars relate exper-
imental variability for membranes synthesized under the same
conditions. As indicated by Eq. 1, a large positive (negative)

1–11 | 7
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L.J. Small, D.R. Wheeler, and E.D. Spoerke, Nanoscale, 2015, 7, 16909.

25 °C, pH= 5.7



Gold	Plating	Increases	Ionic	Selectivity
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§ Measure	the	voltage	when	the	membrane	separates	different	
salt	concentrations
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Fig. 6 Carbon 1s XPS spectra characteristic of the surfaces in Fig. 1,
assembled onto gold-coated glass slides.

ated with aryl carbon (C-C aryl, 284.6 eV), carbon singly bonded
to oxygen (C-O, 285.8 eV), and carbon bonded to nitrogen (C-
N, 286.3 eV). The ratio of these peak areas is nearly 10:4:3 (C-C
aryl : C-O : C-N), in concurrence with the molecular formula of
2a. Upon oxidation of the methoxy groups of 2a to reveal the
quinone of 2b , a higher energy peak consistent with carbon dou-
bly bonded to oxygen in the quinone appears (C=O, 287.9 eV)52.
Additionally, the spectra of 2b may be better fitted if the C-O peak
is replaced by a C-C aliphatic peak (C-C aliphatic, 285.5 eV), in
agreement with the transition of 2a to 2b . XPS spectra of 2g ap-
pear similar to those of 2b ; ambient oxygen likely oxidized the
hydroquinone back to a quinone during the hour between elec-
trochemical switching and XPS measurements.

Carbon 1s spectra for 3a may be decomposed into peaks
attributed to aryl carbon, aliphatic carbon, and carbon singly
bonded to oxygen, all at the peak locations previously identified.
Additionally, a high energy peak characteristic of the carbon dou-
ble bonded to oxygen in the lactone of 3a is seen (O-C=O, 288.5
eV). The area of these peaks are in agreement with the molecular

formula of 3a. Upon oxidation to reveal the carboxylic acid in
3b , the O-C=O peak shifts slightly to 288.8 eV, due to the higher
binding energy afforded by the carboxylic acid as compared to the
lactone34,52. When reduced to 3g, the O-C=O peak shifts back to
288.5 eV, indicative of the lactone.

3.3 Functional Demonstration of Switchable Ionic Selectiv-
ity

Having confirmed the presence of all electrochemically switchable
states outlined in Fig. 1 via the collective results of cyclic voltam-
metry, contact angle, GA-FTIR, and XPS the ability of these func-
tionalized nanopores to enable electrochemically tunable charge
transport was evaluated across varying concentration differences
of aqueous NaCl. The ionic selectivity of a membrane may be
evaluated by measuring the transmembrane voltage which arises
when different concentrations of salt are placed on each side of
the membrane. The transmembrane voltage (V

m

, in volts) at room
temperature for a singly charged 1:1 salt may be described by the
following variant of the Nernst equation, widely applied to ion-
selective electrodes1:

V

m

= 0.059 · (t+� t�) · log

a

right

a

le f t

(1)

Here a relates the activity of the salt solution on the left or right
side of the membrane. NaCl concentrations have been converted
to activities using the activity coefficients in Ref.53. t+ and t� are
the transference numbers, with values between 0 and 1, inclu-
sive, that relate a membrane’s ability to transport cations (t+) or
anions (t�). Zero indicates no transport, and 1 indicates ideal
transport. Thus, an ideally cation-selective membrane (t+ = 1,
t� = 0) is expected to provide +59 mV per order of magnitude
difference in salt activity.

The selectivity of the membrane may be influenced by sev-
eral properties of the nanopores: surface charge, salt activ-
ity, nanopore diameter, and nanopore shape. Nanopore surface
charge and salt activity dictate the electrical field strength and
size of the double layer5,6. Excess negative (positive) surface
charge creates a cation (anion) selective membrane, while the
absence of surface charge precludes double layer formation. A
lower salt activity generally creates a double layer which extends
farther from the surface. As a first order approximation, the
Gouy-Chapman solution to the Boltzmann equation predicts a De-
bye screening length of 12 nm, decreasing to 0.3 nm, as the salt
concentration increases from 0.1 mM to 1 M. By decreasing the
nanopore diameter, the amount of overlap of the double layer
increases at a given salt activity. This decreased pore size will
generally enhance the electrostatic screening, all other factors
being equal54. Control over nanopore shape to include asym-
metric geometries such as cones allows for the creation of ionic
diodes37,39,55–60.

The ionic selectivity of cylindrical nanopores before gold plat-
ing (polycarbonate), after gold plating, and functionalized with
1a, 2a, or 3a are presented in Fig. 7A. Error bars relate exper-
imental variability for membranes synthesized under the same
conditions. As indicated by Eq. 1, a large positive (negative)
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L.J. Small, D.R. Wheeler, and E.D. Spoerke, Nanoscale, 2015, 7, 16909.

25 °C, pH= 5.7



Nitrophenyl Diazonium:	Spontaneous	
Assembly	and	Irreversible	Reduction
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Nitrophenyl Surface	Is	Cation-Selective

10

§ Measure	the	voltage	when	the	membrane	separates	different	
salt	concentrations
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Fig. 6 Carbon 1s XPS spectra characteristic of the surfaces in Fig. 1,
assembled onto gold-coated glass slides.

ated with aryl carbon (C-C aryl, 284.6 eV), carbon singly bonded
to oxygen (C-O, 285.8 eV), and carbon bonded to nitrogen (C-
N, 286.3 eV). The ratio of these peak areas is nearly 10:4:3 (C-C
aryl : C-O : C-N), in concurrence with the molecular formula of
2a. Upon oxidation of the methoxy groups of 2a to reveal the
quinone of 2b , a higher energy peak consistent with carbon dou-
bly bonded to oxygen in the quinone appears (C=O, 287.9 eV)52.
Additionally, the spectra of 2b may be better fitted if the C-O peak
is replaced by a C-C aliphatic peak (C-C aliphatic, 285.5 eV), in
agreement with the transition of 2a to 2b . XPS spectra of 2g ap-
pear similar to those of 2b ; ambient oxygen likely oxidized the
hydroquinone back to a quinone during the hour between elec-
trochemical switching and XPS measurements.

Carbon 1s spectra for 3a may be decomposed into peaks
attributed to aryl carbon, aliphatic carbon, and carbon singly
bonded to oxygen, all at the peak locations previously identified.
Additionally, a high energy peak characteristic of the carbon dou-
ble bonded to oxygen in the lactone of 3a is seen (O-C=O, 288.5
eV). The area of these peaks are in agreement with the molecular

formula of 3a. Upon oxidation to reveal the carboxylic acid in
3b , the O-C=O peak shifts slightly to 288.8 eV, due to the higher
binding energy afforded by the carboxylic acid as compared to the
lactone34,52. When reduced to 3g, the O-C=O peak shifts back to
288.5 eV, indicative of the lactone.

3.3 Functional Demonstration of Switchable Ionic Selectiv-
ity

Having confirmed the presence of all electrochemically switchable
states outlined in Fig. 1 via the collective results of cyclic voltam-
metry, contact angle, GA-FTIR, and XPS the ability of these func-
tionalized nanopores to enable electrochemically tunable charge
transport was evaluated across varying concentration differences
of aqueous NaCl. The ionic selectivity of a membrane may be
evaluated by measuring the transmembrane voltage which arises
when different concentrations of salt are placed on each side of
the membrane. The transmembrane voltage (V

m

, in volts) at room
temperature for a singly charged 1:1 salt may be described by the
following variant of the Nernst equation, widely applied to ion-
selective electrodes1:

V

m

= 0.059 · (t+� t�) · log

a

right

a

le f t

(1)

Here a relates the activity of the salt solution on the left or right
side of the membrane. NaCl concentrations have been converted
to activities using the activity coefficients in Ref.53. t+ and t� are
the transference numbers, with values between 0 and 1, inclu-
sive, that relate a membrane’s ability to transport cations (t+) or
anions (t�). Zero indicates no transport, and 1 indicates ideal
transport. Thus, an ideally cation-selective membrane (t+ = 1,
t� = 0) is expected to provide +59 mV per order of magnitude
difference in salt activity.

The selectivity of the membrane may be influenced by sev-
eral properties of the nanopores: surface charge, salt activ-
ity, nanopore diameter, and nanopore shape. Nanopore surface
charge and salt activity dictate the electrical field strength and
size of the double layer5,6. Excess negative (positive) surface
charge creates a cation (anion) selective membrane, while the
absence of surface charge precludes double layer formation. A
lower salt activity generally creates a double layer which extends
farther from the surface. As a first order approximation, the
Gouy-Chapman solution to the Boltzmann equation predicts a De-
bye screening length of 12 nm, decreasing to 0.3 nm, as the salt
concentration increases from 0.1 mM to 1 M. By decreasing the
nanopore diameter, the amount of overlap of the double layer
increases at a given salt activity. This decreased pore size will
generally enhance the electrostatic screening, all other factors
being equal54. Control over nanopore shape to include asym-
metric geometries such as cones allows for the creation of ionic
diodes37,39,55–60.

The ionic selectivity of cylindrical nanopores before gold plat-
ing (polycarbonate), after gold plating, and functionalized with
1a, 2a, or 3a are presented in Fig. 7A. Error bars relate exper-
imental variability for membranes synthesized under the same
conditions. As indicated by Eq. 1, a large positive (negative)
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25 °C, pH= 5.7
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Ionic	Selectivity	Switches	upon	Reduction	of	
Nitrophenyl to	Aminophenyl
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25 °C, pH= 5.7
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Trimethyl Lock:	Hiding	a	Carboxylic	Acid

12

Molecules synthesized by D.R. Wheeler

Surface Contact
Angle (°)

3α 76

3β 64

3γ 77

~0.2 monolayers of trimethyl lock have 
been deposited onto electroless gold.
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L.J. Small, D.R. Wheeler, and E.D. Spoerke, Nanoscale, 2015, 7, 16909.
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Exposed	Carboxylic	Acid	Increases	Selectivity

Exposing carboxylic acid in “open” trimethyl
lock increases surface charge, increasing 
ionic selectivity 8x.

Molecules synthesized by D.R. Wheeler

−4 −2 0 2 4
−250

−150

−50

50

150

250

Tr
an

sm
em

br
an

e 
Po

te
nt

ia
l /

 m
V

Log( Cleft / Cright )

3`

3_

3a

Surface Slope

3α 0.29

3β 0.91

3γ 0.31

3α
Not selective

“closed”

3β
Cation-selective

“open”

3γ
Not selective

“closed”

Reversible electrochemical redox

log( aright / aleft )

L.J. Small, D.R. Wheeler, and E.D. Spoerke, Nanoscale, 2015, 7, 16909.

25 °C, pH= 5.7
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Electrochemically	Switched	States	Are	
Stable	>30	Days
§ Repeat	ionic	selectivity	test	after	30	days
§ Membranes	stored	in	0.1	mM	NaCl
§ Electrochemical	state	retained	without	maintained	stimulus!
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L.J. Small, D.R. Wheeler, and E.D. Spoerke, Nanoscale, 2015, 7, 16909.



Moving	Forward

§ Electrochemically	switchable,	chemically	stabilized	
chemistries	can	be	used	to	control	the	surface	charge	and	
ionic	selectivity	nanoporous membranes.

§ These	chemistries	are	stable	>30	days	without	continuously	
applied	stimulus.

§ Investigation	of	higher	flux	membranes	will	allow	industrial	
separations	and	water	purification	(e.g.	electrodialysis)	
applications.
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Pressure-Biased	Chemical	Etching	
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data1
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L.J. Small, D.R. Wheeler, and E.D. Spoerke, RSC Adv., 4 (2014) 5499.
TA# 12744.  US Patent No. 9,387,444 B2

nanoporous polycarbonate membrane

Elevated pressure increases 
neutralizer concentration in nanopores, 
minimizing etch rate at one side.

Increase pressure
head of neutralizer

Cylindrical Nanopores Conical Nanopores



FT-IR
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XPS
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Revised	Electroless Gold	Plating

20

1. Etch in 9 M NaOH for 5 min.
2. Rinse in H2O.
3. UV-ozone clean 10 min per side
4. Sensitize under ultrasonication in 0.07 M trifluoroacetic acid, 0.03 M SnCl2. 
5. Rinse in H2O.
6. Activate under ultrasonication in 0.03 M AgNO3, NH4OH.
7. Rinse in H2O.
8. Electrolessly plate Au from AuNaSO3 + CH2O at 3 °C.

initial 
gold

optimized 
gold1 cm

Improved surface preparation enables uniform 
gold coverage across polycarbonate surface. 500 nm

Original recipe from C. R. Martin et. al, Adv. Mater., 2001, 13, 1351–1362.



Diazonium Assembly	Conditions

§ 1 (nitrophenyl)	and	2	(quinone)
§ 1	mM in	1:1:	H2O:EtOH
§ 4	h	in	dark
§ Rinse	in	DI	H2O,	then	soak	in	0.1	mM NaCl 24	h

§ 3 (trimethyl lock)
§ 1	mM in	2-propanol
§ 24	h	in	dark
§ Rinse	in	DI	H2O,	then	soak	in	0.1	mM NaCl 24	h

21



Conical	Response	to	Concentration	Gradients

22
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+ Measure Voltage -!

aleft! aright!

For log(aright/aleft) > 0, aleft = 10-4!

For log(aright/aleft) < 0, aright = 10-4!

membrane!

30 min etch

60 min etch 90 min etch

2.9, 1.7, 1.3,

Etch 
Time 
(min)

Dbase
(nm)

Dtip
(nm)

Vforward
/Vreverse

0 6.1 6.1 1.2

30 70 1.5 2.9

60 180 1.0 1.7

90 225 2.5 1.3


