SAND2017-4129C

Sandia
Exceptional service in the national interest National

Laboratories

SST Update — April 2017

Scott Hemmert
Scalable Computer Architectures Department

DEPARTMENT OF //A ' ' DQ(Ql
ENERGY /] O»i Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Nation: ation Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

SST in a Nutshell)

= Parallel Discrete-Event Simulator Framework
= Flexible framework allows multitude of custom “simulators”
= Demonstrated scaling to over 512 processors

= Open API

= QOpen-source core and models

= Available at https://github.com/sstsimulator
= Easily extensible with new models
= Modular framework

= Comes with many built-in simulation models
= Processors, Memory, Network

= Time-scale independent core
= Handles Micro-, Meso-, Macro-scale simulations

Sandia

SST’s discrete-event algorithm) .

SST SST SST
Component
Component Link Component Component Component Type: NoC
Type: Core Type: Cache '
Event Router

SST Core

SST Link
Latency: 4ns

Instantiation

Configuration

Time Coordination

Parallel SST SST SST
e g Component
Parititioning Communication Component Component Type: NoC
Type: Core Type: Cache RomIJter

= Simulations are comprised of components connected by links

= Components interact by sending events over links
= Each link has a minimum latency

= Components can load subComponents and modules for
additional functionality

SST 6.0 Highlights) .

= Released June 2016

= Move to github from svn
= Adopted Master/Devel development model using github pull requests
= Can accept pull requests from outside Sandia

= Split Core / Elements
= Multiple repositories: core, elements, sst-macro, sge
= Configuration Changes (multiple core and element installs)
= |ntroduced backward compatibly guarantees for core

= On node threading (using c++11 threads)
= |ntegrated statistics engine

= |n use at multiple vendors:
= AMD, Cray, Intel, IBM, Nvidia

SST Git Structure) e

Master Devel User Branches/Forks

Master Automerger:
Automatically generates pull
requests and merges devel
branch into master branch
when devel passes all
overnight tests.

Autotester:

When user submits a pull
request, runs a subset of
overnight tests. On successful
pass, branch/fork can be
merged (automerged in element
repository and manually
merged in core). Core also
requires a code review before

merge.
Pull requests

Merge controlled by:

A A

/]

I I
>
Master Autotester User

Automerger

SST 7.0 Highlights

= Scheduled for release early May 2017

= New core features:
= Removes Boost dependency

SubComponent enhancements
= SubComponents can own ports
* Named SubComponentSlots

Embedded ElementLibrarylnfo

= Element information now specified in element definition

= Simplifies library-level python modules

Hybrid parallel execution (stable)

Early HDF5 support for statistics (serial HDF5 only for now)

Sandia
National
Laboratories

SST 7.0 Highlights, cont)

= New Elements features

Non-volatile memory models

Updated timings for DRAM (supports DDR4 up to 3200 MT/s)
Scratchpad memory support in memHierarchy

TLB modeling (page table walking)

Beta support for dynamically changing link bandwidths in network
models

Early support for memory congestion modeling in network motifs

= Ember (motif) simulation where one node models application memory
traffic in addition to network traffic (currently uses miranda to model on-
node memory traffic)

EXAMPLES OF NEW SST FEATURES

Named SubComponent Slots

SubComponent Use Example — #&# @

hr_router hr_router

LC LC LC LC

End Point End Point End Point End Point

10
-~ ...

Named SubComponent Slots ~ #&# [@E:.

SST 6.0 SST7.0

Configured through

containing component’s Component has a

parameters named subcomponent
Port OWHG? by Pot:t owned byt slot which is configured
componen subcomponen through python input file

|l RTR || ! \ /
merlin.linkcontrol p— TR —
merlin.linkcontrol

linkcontrol

\ End Point / \ End Point /

p

h

Enhanced Flexibility i

Subcomponent slots can
be configured with
multiple subcomponents.

RTR RTR RTR

merlin.linkcontrol merlin.linkcontrol merlin.linkcontrol

linkcontrol (SST::Core::Interfaces::SimpleNetwork)

merlin.multirail_linkcontrol

Linkcontrol (SST::Core::Interfaces::SimpleNetwork

_ End Point \

Subcomponent slots
define an API.

Sandia
National _
Laboratories

Messier:

Non-Volatile Memory Model

Why is it important to have NVM

model?

= Evaluate the performance impact of using NVMs as main
memory in future HPC system.

" Finding interesting design points and key parameters that
affect performance.

= Enables comparisons between different NVM products from
different vendors.

= Enables better understanding of bottlenecks for various
designs of NVMs.

Sandia
National
Laboratories

Messier: A detailed NVM-based DIMM S50 @i

National _
Laboratories

Memory Model for SST

Highly configurable modular element for SST.
Models NVM devices and internal high-end DIMM controller.

Detailed models for contentions, bank conflicts, row buffers,
channel contention, read latencies, write latencies, internal
buffering, internal caching, scheduling, etc.

More than 20 parameters that enables detailed modeling of
different NVM devices.

The NVM component can be configured differently for each
instance, which enables modeling systems with different
NVM devices.

Software A

rchitect

Messier

memHierarchy.MemController

Link Link
Cache ‘«— direct_link cube_link
Hierarchy Backend = memHierarchy.Messier

NVM_DIMM

Rank

Rank

NVM_WRITE_BUFFER

ure and Model

Rank

= e |

Rank

OO /| e

ready_trans

@ If (size > threshold and writes are less than max)
flush one write entry

Outstanding

Add the dispatched transaction to outstanding

read request and execute it

Write Buffer
SR

write request

@ find a transaction ready to execute

transactions

Memory Controller Backend

Sandia
National _
Laboratories

Early Results: Sensitivity to Write S (e
Latency

Laboratories

Sensitivity to NVM Write Latency

1.2
=)
o
e 1
Il
>
[5)
c
o)
© 0.8
—
Q
E —8— SimpleMOC
2 0.6 —e—XSBench
€
= =0=|_ulesh
C
2 == MiniFE
3 04
2 =0=—Pennant
L
)
=
® 0.2
O
o

0

100 200 300 400 500 600 700 800 900 1000
Write Latency (number of cycles)

Early Results: Sensitivity to Read S (e
Latency

Laboratories

Sensitivity to NVM Read Latency

2.5
=)
o
[ap]
[l
o 2
O
n'd
o
(0]
=
515 —e—SimpleMOC
04
E’ —@— X SBench
E =0 |_ulesh
1
IS —e—MiniFE
>
8 —@—Pennant
i
o 05
=
©
(0]
h's
0

100 200 300 400 500 600 700 800 900 1000
tRCD (number of cycles)

Early Results: Sensitivity to Max S (e
Concurrent Writes

Laboratories

Sensitivity to Max. # Concurrent Writes

3
T
1l
(%]
9
= 25
=
+*
kel
[0)
=
% 2 =8 SimpleMOC
0
E —8— XSBench
E == ulesh
- 1.5
ks =0 \iniFE
>
8 —@—Pennant
0
o 1 ® °
=
©
)
o
0.5

1 2 4 8 16 32
Max # Concurrent Writes

Early Results: Impact of Caching ¥ (@&,

Performance Impact of Internal Caching (Normalized to DDR4)

SimpleMOC XSBench Lulesh MiniFE Pennant

Relative Execution Time (Normalized to DDR4)
o = N w »
(&)} - (¢} N (&)} w (¢} e (&)}

o

ENVM-4MB BNVM-8MB ENVM-16MB ®NVM-32MB BmNVM-64MB BNVM-128MB BNVM-256MB BNVM-512MB BNVM-1GB ® DDR4-DRAM

Questions) e

