
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

SST	Update	– April	2017
Scott	Hemmert

Scalable	Computer	Architectures	Department

SAND2017-4129C

SST	in	a	Nutshell

§ Parallel	Discrete-Event	Simulator	Framework
§ Flexible	framework	allows	multitude	of	custom	“simulators”
§ Demonstrated	scaling	to	over	512	processors

§ Open	API
§ Open-source	core	and	models

§ Available	at	https://github.com/sstsimulator
§ Easily	extensible	with	new	models
§ Modular	framework

§ Comes	with	many	built-in	simulation	models
§ Processors,	Memory,	Network

§ Time-scale	independent	core
§ Handles	Micro-,	Meso-,	Macro-scale	simulations

2

SST’s	discrete-event	algorithm

§ Simulations	are	comprised	of	components connected	by	links
§ Components interact	by	sending	events	over	links
§ Each	link has	a	minimum latency
§ Components can	load	subComponents and	modules for	

additional	functionality

Component Component

SST Core

Configuration

Parititioning

Link
Event

Instantiation Time Coordination

Parallel
Communication

SST
Component
Type: Core

SST
Component
Type: Cache

SST
Component
Type: Core

SST
Component
Type: Cache

SST
Component
Type: NoC

Router

SST
Component
Type: NoC

Router

SST Link
Latency: 1ns

SST Link
Latency: 2ns

SST Link
Latency: 2ns

SST Link
Latency: 1ns

SS
T

Li
nk

La
te

nc
y:

 4
ns

3

SST	6.0	Highlights
§ Released	June	2016
§ Move	to	github from	svn

§ Adopted	Master/Devel development	model	using	github pull	requests
§ Can	accept	pull	requests	from	outside	Sandia

§ Split	Core	/	Elements
§ Multiple	repositories:	core,	elements,	sst-macro,	sqe
§ Configuration	Changes	(multiple	core	and	element	installs)
§ Introduced	backward	compatibly	guarantees	for	core

§ On	node	threading	(using	c++11	threads)
§ Integrated	statistics	engine

§ In	use	at	multiple	vendors:
§ AMD,	Cray,	Intel,	IBM,	Nvidia

4

SST	Git Structure

5

Master Devel User Branches/Forks

Master
Automerger Autotester User

Pull requests

Master Automerger:
Automatically generates pull
requests and merges devel
branch into master branch
when devel passes all
overnight tests.

Autotester:
When user submits a pull
request, runs a subset of
overnight tests. On successful
pass, branch/fork can be
merged (automerged in element
repository and manually
merged in core). Core also
requires a code review before
merge.

Merge controlled by:

SST	7.0	Highlights
§ Scheduled	for	release	early	May	2017

§ New	core	features:
§ Removes	Boost	dependency
§ SubComponent enhancements

§ SubComponents can	own	ports
§ Named	SubComponentSlots

§ Embedded	ElementLibraryInfo
§ Element	information	now	specified	in	element	definition
§ Simplifies	library-level	python	modules

§ Early	HDF5	support	for	statistics	(serial	HDF5	only	for	now)
§ Hybrid	parallel	execution	(stable)

6

SST	7.0	Highlights,	cont

§ New	Elements	features
§ Non-volatile	memory	models
§ Updated	timings	for	DRAM	(supports	DDR4	up	to	3200	MT/s)
§ Scratchpad	memory	support	in	memHierarchy
§ TLB	modeling	(page	table	walking)
§ Beta	support	for	dynamically	changing	link	bandwidths	in	network	

models
§ Early	support	for	memory	congestion	modeling	in	network	motifs

§ Ember	(motif)	simulation	where	one	node	models	application	memory	
traffic	in	addition	to	network	traffic	(currently	uses	miranda to	model	on-
node	memory	traffic)

7

EXAMPLES	OF	NEW	SST FEATURES

8

Named	SubComponent Slots

9

hr_router

SubComponent Use	Example

10

PC

PC

PC

PC

PC PC

Topology

Xbar

hr_router

PC

PC

PC

PC

PC PC

Topology

Xbar

End Point

LC

End Point

LC

End Point

LC

End Point

LC

Named	SubComponent Slots

11

End Point

merlin.linkcontrol

RTR

Port owned by
component

End Point

Port owned by
subcomponent

linkcontrol

merlin.linkcontrol
RTR

Configured through
containing component’s
parameters Component has a

named subcomponent
slot which is configured
through python input file

SST 6.0 SST 7.0

Enhanced	Flexibility

12

End Point

Linkcontrol (SST::Core::Interfaces::SimpleNetwork)

Subcomponent slots can
be configured with
multiple subcomponents.

merlin.multirail_linkcontrol

linkcontrol (SST::Core::Interfaces::SimpleNetwork)

merlin.linkcontrol
RTR

merlin.linkcontrol
RTR

merlin.linkcontrol
RTR

Subcomponent slots
define an API.

Messier:
Non-Volatile	Memory	Model

13

Why	is	it	important	to	have	NVM	
model?

§ Evaluate	the	performance	impact	of	using	NVMs	as	main	
memory	in	future	HPC	system.

§ Finding	interesting	design	points	and	key	parameters	that	
affect	performance.

§ Enables	comparisons	between	different	NVM	products	from	
different	vendors.

§ Enables	better	understanding	of	bottlenecks	for	various	
designs	of	NVMs.

Messier:	A	detailed	NVM-based	DIMM	
Memory	Model	for	SST

§ Highly	configurable	modular	element	for	SST.
§ Models	NVM	devices	and	internal	high-end	DIMM	controller.
§ Detailed	models	for	contentions,	bank	conflicts,	row	buffers,	

channel	contention,	read	latencies,	write	latencies,	internal	
buffering,	internal	caching,	scheduling,	etc.

§ More	than	20	parameters	that	enables	detailed	modeling	of	
different	NVM	devices.

§ The	NVM	component	can	be	configured	differently	for	each	
instance,	which	enables	modeling	systems	with	different	
NVM	devices.

Software	Architecture	and	Model

Messier

bus

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Rank

Rank

NVM_DIMM

NVM_WRITE_BUFFER

memHierarchy.MemController

Backend = memHierarchy.Messier
cube_link

LinkLink
direct_linkCache

Hierarchy

transactions

Memory Controller Backend

Write Buffer

Rank Rank

1 If (size > threshold and writes are less than max)
 flush one write entry

2 find a transaction ready to execute

Outstanding

3 Add the dispatched transaction to outstanding
and execute it

ready_trans

write request

read request

Early	Results:	Sensitivity	to	Write	
Latency

0

0.2

0.4

0.6

0.8

1

1.2

100 200 300 400 500 600 700 800 900 1000

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e
(W

rit
e

La
te

nc
y

=
10

00
)

Write Latency (number of cycles)

Sensitivity to NVM Write Latency

SimpleMOC

XSBench

Lulesh

MiniFE

Pennant

0

0.5

1

1.5

2

2.5

100 200 300 400 500 600 700 800 900 1000

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e
(R

el
at

iv
e

to
 R

C
D

 =
 3

00
)

tRCD (number of cycles)

Sensitivity to NVM Read Latency

SimpleMOC

XSBench

Lulesh

MiniFE

Pennant

Early	Results:	Sensitivity	to	Read	
Latency

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e
(R

el
at

iv
e

to
 #

 w
rit

es
 =

 4
)

Max # Concurrent Writes

Sensitivity to Max. # Concurrent Writes

SimpleMOC

XSBench

Lulesh

MiniFE

Pennant

Early	Results:	Sensitivity	to	Max	
Concurrent	Writes

Early	Results:	Impact	of	Caching

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

SimpleMOC XSBench Lulesh MiniFE Pennant

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e
(N

or
m

al
iz

ed
 to

 D
D

R
4)

Performance Impact of Internal Caching (Normalized to DDR4)

NVM-4MB NVM-8MB NVM-16MB NVM-32MB NVM-64MB NVM-128MB NVM-256MB NVM-512MB NVM-1GB DDR4-DRAM

Questions

