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SST	in	a	Nutshell

§ Parallel	Discrete-Event	Simulator	Framework
§ Flexible	framework	allows	multitude	of	custom	“simulators”
§ Demonstrated	scaling	to	over	512	processors

§ Open	API
§ Open-source	core	and	models

§ Available	at	https://github.com/sstsimulator
§ Easily	extensible	with	new	models
§ Modular	framework

§ Comes	with	many	built-in	simulation	models
§ Processors,	Memory,	Network

§ Time-scale	independent	core
§ Handles	Micro-,	Meso-,	Macro-scale	simulations
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SST’s	discrete-event	algorithm

§ Simulations	are	comprised	of	components connected	by	links
§ Components interact	by	sending	events	over	links
§ Each	link has	a	minimum latency
§ Components can	load	subComponents and	modules for	

additional	functionality
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SST	6.0	Highlights
§ Released	June	2016
§ Move	to	github from	svn

§ Adopted	Master/Devel development	model	using	github pull	requests
§ Can	accept	pull	requests	from	outside	Sandia

§ Split	Core	/	Elements
§ Multiple	repositories:	core,	elements,	sst-macro,	sqe
§ Configuration	Changes	(multiple	core	and	element	installs)
§ Introduced	backward	compatibly	guarantees	for	core

§ On	node	threading	(using	c++11	threads)
§ Integrated	statistics	engine

§ In	use	at	multiple	vendors:
§ AMD,	Cray,	Intel,	IBM,	Nvidia
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SST	Git Structure
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SST	7.0	Highlights
§ Scheduled	for	release	early	May	2017

§ New	core	features:
§ Removes	Boost	dependency
§ SubComponent enhancements

§ SubComponents can	own	ports
§ Named	SubComponentSlots

§ Embedded	ElementLibraryInfo
§ Element	information	now	specified	in	element	definition
§ Simplifies	library-level	python	modules

§ Early	HDF5	support	for	statistics	(serial	HDF5	only	for	now)
§ Hybrid	parallel	execution	(stable)
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SST	7.0	Highlights,	cont

§ New	Elements	features
§ Non-volatile	memory	models
§ Updated	timings	for	DRAM	(supports	DDR4	up	to	3200	MT/s)
§ Scratchpad	memory	support	in	memHierarchy
§ TLB	modeling	(page	table	walking)
§ Beta	support	for	dynamically	changing	link	bandwidths	in	network	

models
§ Early	support	for	memory	congestion	modeling	in	network	motifs

§ Ember	(motif)	simulation	where	one	node	models	application	memory	
traffic	in	addition	to	network	traffic	(currently	uses	miranda to	model	on-
node	memory	traffic)
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EXAMPLES	OF	NEW	SST FEATURES
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Named	SubComponent Slots
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hr_router

SubComponent Use	Example
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Named	SubComponent Slots
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Enhanced	Flexibility
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Messier:
Non-Volatile	Memory	Model

13



Why	is	it	important	to	have	NVM	
model?

§ Evaluate	the	performance	impact	of	using	NVMs	as	main	
memory	in	future	HPC	system.

§ Finding	interesting	design	points	and	key	parameters	that	
affect	performance.

§ Enables	comparisons	between	different	NVM	products	from	
different	vendors.

§ Enables	better	understanding	of	bottlenecks	for	various	
designs	of	NVMs.



Messier:	A	detailed	NVM-based	DIMM	
Memory	Model	for	SST

§ Highly	configurable	modular	element	for	SST.
§ Models	NVM	devices	and	internal	high-end	DIMM	controller.
§ Detailed	models	for	contentions,	bank	conflicts,	row	buffers,	

channel	contention,	read	latencies,	write	latencies,	internal	
buffering,	internal	caching,	scheduling,	etc.

§ More	than	20	parameters	that	enables	detailed	modeling	of	
different	NVM	devices.

§ The	NVM	component	can	be	configured	differently	for	each	
instance,	which	enables	modeling	systems	with	different	
NVM	devices.



Software	Architecture	and	Model
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Early	Results:	Sensitivity	to	Write	
Latency

0

0.2

0.4

0.6

0.8

1

1.2

100 200 300 400 500 600 700 800 900 1000

R
el

at
iv

e 
Ex

ec
ut

io
n 

Ti
m

e 
(W

rit
e 

La
te

nc
y 

= 
10

00
)

Write Latency (number of cycles)

Sensitivity to NVM Write Latency

SimpleMOC

XSBench

Lulesh

MiniFE

Pennant



0

0.5

1

1.5

2

2.5

100 200 300 400 500 600 700 800 900 1000

R
el

at
iv

e 
Ex

ec
ut

io
n 

Ti
m

e 
(R

el
at

iv
e 

to
 R

C
D

 =
 3

00
)

tRCD (number of cycles)

Sensitivity to NVM Read Latency

SimpleMOC

XSBench

Lulesh

MiniFE

Pennant

Early	Results:	Sensitivity	to	Read	
Latency



0.5

1

1.5

2

2.5

3

1 2 4 8 16 32

R
el

at
iv

e 
Ex

ec
ut

io
n 

Ti
m

e 
(R

el
at

iv
e 

to
 #

 w
rit

es
 =

 4
)

Max # Concurrent Writes 

Sensitivity to Max. # Concurrent Writes

SimpleMOC

XSBench

Lulesh

MiniFE

Pennant

Early	Results:	Sensitivity	to	Max	
Concurrent	Writes



Early	Results:	Impact	of	Caching
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Questions


