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Abstract

Powder bed laser additive manufacturing (AM) technique is widely used to fabricate complicated three-dimensional structures. Parts made by this
fast melting and rapid solidification process are usually not at their equilibrium state. Additionally, the directed energy deposition by the laser
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beam can produce crystallographic texture and anisotropic properties. The driving forces imparted by this non-equilibrium state, such as stored N La-‘_'er b_eam

elastic strain energy and chemical potential, can be invoked by an annealing process, which results in metallurgical changes such as stress-relief, WM. . direction

recrystallization, and diffusion. This work investigates and compares the thermal properties of AM fabricated aluminum alloy with and without ' éﬁ;?;(')l:) 2%

thermal annealing. Special focus is placed on the non-equilibrium state induced lattice imperfections and microstructure evolution on the thermal | e

properties during the annealing process. These changes will be compared to the calculated phonon and electron mean-free-paths to identify the orin)-(;g::ztiifeztion)

key issues governing the changes in thermal properties during the annealing process. These implications are important to ensure the thermal

performance of AM fabricated AlISi10Mg parts and other solution treatable alloys for practical applications. www.3trpd.co.uk
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 The thermal properties of the as-built and the stress-relieved parts fabricated by the SLM process are significantly different. The stress-relieved parts are isotropic, while the as-received
samples exhibit an anisotropic behavior with significant residual stress and texture.

 Thermal treatments above the Debye temperature of aluminum heal lattice defects, promote phase segregation/precipitation, reduce the residual stresses, and coarsen the microstructure.

* By aggregating excess Si atoms into large precipitates, removing lattice defects and coarsening the microstructure, thereby increasing the mean-free path between scattering centers, the
thermal diffusivity and thermal conductivity can be drastically improved. In addition, the collapsing of the cellular structure above282°C also contributes to the improvement of heat transfer.

 These implications are important to ensure the thermal performance of AM fabricated solution treatable alloys for practical applications.
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