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INTRODUCTION
Solid state 1H double quantum (DQ) NMR experiments have been used to investigate the
segmental dynamics for a series of thermosetting epoxy resins. It has been recently
demonstrated ([1] Martin-Gallego and co-worker, 2015) that DQ NMR can provide information
into the dynamics and curing of epoxies. For thermoset materials, chemical crosslinks introduce
topological constraints leading to the formation of residual stresses during curing. We evaluated a
unique ferrocene based diamine (FcDA) curing agent to address the impact that the Fc fluxional
processes has on the polymer dynamics. At temperatures significantly above Tg, evaluation of the
DQ 1H NMR intensity buildups provide a measure of the local cross link and entanglement
densities. Heterogeneous distributions of these topological constraints for the different thermoset
materials were observed, and were a function of both the cross linker and the relative sample
temperature with respect to Tg.

MATERIALS AND NMR SPECTROSCOPY
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 All static solid state 1H NMR spectra were obtained on a Bruker Avance III using a 7 mm DOTY High
Temperature (HT) MAS probe at 400.1 MHz. The DQ NMR correlation experiments utilized a 5 pulse
sequence with refocusing  pulses.

 1H NMR provides insight into the different dynamical time scales occurring.

 Different curing agents did produce differences in Tg activation energies, with the
relative Ea order D‐230 >> MDA > FcDA.

 DQ NMR showed differences in the dynamics above Tg with the FcDA revealing a
heterogeneous distribution of local order parameters Sb, but also revealing more
mobile component (x10 smaller Deff) for polymer chain dynamics.

 Demonstrated that the FcDA curing agent produces materials with more flexible
chain fluxuations between cross‐links; supporting the reduced cure stress observed
for these thermoset materials.

Figure 1: Chemical structure of epoxy resin and curing agents being investigated.
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CONCLUSIONS

 Thermosets were prepared by hand mixing EPON 828 and curing agent in equimolar concentration.

 For the D‐230 and FcDA thermosets the mixing was performed at room temperature (RT) followed by
curing overnight at RT, with an additional 2 hr. treatment at 120 oC and 140 oC, respectively. The FcDA
sample was further cured an additional 24 hr. at 175 oC. The DMA cured thermoset was mixed and
cured overnight at 100 oC, followed by an additional 1 hr. cure at 200 oC.

 All NMR experiments were performed on these fully cured materials. Additional epoxy preparation
details are provided in Ref. [2].

Figure 2: 5‐pulse NMR sequence used for excitation and reconversion of the DQ coherences. The DQ 
buildup curves were obtained by varying DQ while keeping t1 and f fixed.

Figure 3: Static 1H NMR spectra as a function of temperature for thermoset materials produced using 
the diamine FcDA, MDA and D‐230 curing agents. The high temperature limit shown correspond to 

equivalent reduced temperatures T/Tg ~ 1.2 or ΔT/Tg = +0.2. 
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Epoxy Sample Tg DSC (oC) Tg NMR (oC)a ba Tg Ea (kJ/mol)b Sub Tg Ea’ (kJ/mol)c

EPON 828 + MDA 180 182 ‐11.1 33.5 2.8

EPON 828 + D230 90 106 ‐9.6 62.1 2.9

EPON 828 + FcDA 125 137 ‐13.8 35.3 1.8
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113 138 ‐15.6 27.4 2.0
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Figure 3: 1H‐1H dipolar coupling (Deff/2) determined from the DQ NMR buildups using FTIKREG [5]. 

 As predicted, in these fully cured epoxy materials
increasing the sample temperature results in the
dipolar coupling (and equivalently the order
parameter Sb) dramatically decreasing for T > Tg.

 The chain dynamics for the D‐230 and MDA cured
materials are similar for T > Tg.

 Both the D‐230 and MDA cured epoxies reveal
broad distributions of Deff (D ~ 25 kHz) with a
mean <Deff> ~ 10 kHz.

 The FcDA cure epoxy shows a bimodal distribution
of chain dynamics, with a rigid fraction (Deff ~ 20
kHz) and a very mobile fraction (Deff ~ 3 kHz) well
above the glass transition temperature (T/Tg = 1.2).
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Figure 4: A‐B) 1H NMR line shape variation versus reduced temperature. C) Correlation times () 
extracted using proposed equation in Ref. [3], along with predicted Tg activation energies Ea. 

Normalization and Fitting of 1H DQ NMR Buildup CurvesNormalization and Fitting of 1H DQ NMR Buildup Curves

Figure 5: Normalized DQ build up for the different thermoset materials produced with the diamine 
curing agents shown in Figure 1 as a function of temperature through Tg. 
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