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Motivation

 Electronic devices need 
protection from mechanical and 
thermal shocks under normal 
operating conditions 

 Foams can be used for this 
purpose

 Foams pyrolyze at relatively low 
temperatures (250C – 300C)

 In a fire environment and in 
sealed systems, the foam 
pyrolysis can cause 
pressurization 

 Need a model of heat transfer 
and pressurization

 Medium scale experiments for 
validation



 Medium Scale Experiment
 Foam in a Can (FIC)
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Foam in a Can

Encapsulating foam heated to 900 C at a rate of 
200 C/min



Foam in a Can Experiment

 Data Sets:

 320 kg/m3 PMDI polyurethane foam 
(rigid, closed cell)

 Heated to 800 C at a rate of 150 C/min 
and 50 C/min.  

 Can dimensions are approximately

 Diameters: 9 cm

 Length: 6.5 cm 

 Side Wall Thickness: 0.5 mm

4



Foam in a Can Experiment

 Monitor pressure and temperature

 X-Rays to view can interior 

 Experiments run to breach
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Foam in a Can Experiment

 Experiment conducted in upright and inverted orientations

 Material bulk movement towards or away from heat source
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Foam in a Can Experiment

Temperature is monitored on the top, along the 
sides, and on the bottom of the can as well as on an 

embedded object.
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Decomposing Foam

8

Virgin Material + Heat
Decomposition Products
(solids, liquids, gases)

Liquid

Virgin Foam

Gas

Heat

Char



Decomposing Foam
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Porous Flow Model Description 

 3D Model in Aria

 Three step reaction mechanism

 PMDI Polyurethane -> CO2, light and heavy 
organics (gas phase), char

 Continuity, species, and enthalpy equations 

 Solved for in condensed and gas phases

 Gas velocity solved using Darcy’s approximation 
for flow through a porous material

 Ideal gas law used to relate density to pressure

 Radiative and Convective boundary conditions

 Material Properties

 Foam Effective Conductivity, Foam Porosity, 
Foam Permeability  

 Function of reaction

 Other material properties

 Constant or function of temperature
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Parameter Calibration/Optimization    

 Porous media equations introduce variables into that are unknown

 Virgin foam permeability

 The foam is closed cell, therefore a permeability can’t be tested. 

 Virgin Foam Range: 10-14 to 10-7

 Char foam permeability

 Can’t be measured in-situ 

 Char Foam Range: 10-8 to 10-6.5

 Organic gas fraction

 Unclear what fraction of the decomposition products are in the gas vs condensed 
phase

 Range: 0 to 0.44

 Rosseland-mean extinction coefficient (��) to calculate the radiation 
contribution to the effective conductivity in the char

 Absorption and scatter can’t be measured in-situ 

 Range: 200 to 1990

11



Organic Gas Fraction 

���� ��� = 0.45 ����� + 0.15 ����� + 0.4 �����

����� → 0.56 ��� + 0.44 − ������ ���� + [������]�ℎ��

����� →[1 − 2 ∗ ������]���� + [2 ∗ ������]�ℎ��

����� →[0.5 − ������] ���� + [0.5 + ������] �ℎ��

 Varied from 0 to 0.44

 Separate values for inverted and upright to approximate liquid dripping 
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Parameter Calibration/Optimization

 Global method was used 

 Pressure and temperature of the slug are the optimized response 
quantities (from 150 C/min data set)
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150 C/min
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Pressure TC 25 Temperature

Low Bound High Bound Optimized Value
Virgin Foam Permeability [m2] 1x10-14 1x10-8 7.76x10-13

Char Foam Permeability [m2] 1x10-8 1x10-6.5 1.48x10-8

Upright Organic Gas Fraction 0 0.44 0.37
Inverted Organic Gas Fraction 0 0.44 0.22

Char �� [mK] 200 1990 579
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150 C/min
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50 C/min
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50 C/min
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Future Work - Vapor Liquid Equilibrium 

 This study more closely matched 
experimental data when separate values 
controlled the rate of gasification

 X-Rays of the experiments show what 
looks to be liquid decomposition products

 Early investigations show that major 
decomposition products can be liquids at 
pressures and temperatures seen in the 
experiments. 
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QUESTIONS?
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Previous Work

 Previous Model Development

 No flow model

 Model developed with foams that leave structured char

– Good agreement in temperature and pressure with experiments

 Erickson, K.L, et al. Proceedings of BCC 2010, Stamford, CT, May 2010

 Previous PMDI Polyurethane Development using Erickson (no flow) model

 Scott, S.N., et al. Fire Technology Dec 2014

 Validation of 150 C/min data set

 Mean Value and Latin Hyper Cube were compared 

 Scott, S.N., et al. Mediterranean June 2015

 Want understand the effect of heating rate
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BACKUP SLIDES
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Modeled Physics
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Permeability

 Appears in the Darcy approximation

��,� = −
��

��

���

���
+ ����

 Virgin Foam Range: 10-18 to 10-7

 Char Foam Range: 10-9 to 10-6

 Exponent is varied 

 Check to ensure Virgin Foam Permeability is lower than Char Foam 
Permeability
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Rosseland-mean Extinction Coefficient

���� =
16�

3��
��

 Varied from 200 to 1900
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X-Ray Video
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X-Ray Video
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