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Why model cookoff? i) i,

Laboratories

= Need to know behavior in accidental fires to assess safety.
= Need to know the time-to-ignition for safety timing studies.

= Need to know the amount of gas produced to determine if
confinement will rupture before ignition.

= Need to know how the damaged state of the material affects
the subsequent burn behavior.

= |gnition time, gas production, burn behavior are all affected
by confinement variables such as venting, density,
permeability, and ullage.

Carrier Deaths Injured Cost

Oriskany, 1966 44 156 $63.6M
Forestal, 1967 134 162 S758M
Enterprise, 1969 28 343 S554M
Nimitz, 1981 14 48 S150M

220 709 $1525M

Atwood et al, “Experimental Support of a Slow Cookoff Model Validation effort,”
2004 Insensitive Munitions & Energetic materials Technology Symposium (2004).

Tremendous cost considering none were under attack! ,




Applying PBX 9501 model to other PBXs

Single model
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12 explosives
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Energy PG5 =V VD S M,

Mechanism H.0.—H.0,
BDNPA/F—-—NVR +4NO,

Estane + NO, —— 7.1 Gas, + 8.1 Carbon
HMX +NO, ——-11.5 Gas_, + Carbon
HMX—-10 Gas_, +1.6 Carbon

Rates

= A exp(~52)[H,0]

= A, exp(~22 | [BDNPA/F]
ry= Ay ()" T exp(~2 [ Estane][NO, |
ry = Ay(£)" T exp(Z2 ) [HMX][NO, |

ry=Ag(£)" T exp(~E ) [HMX]

. duo0,] . dmo,] . 4[BDNPAF] _ dNVR] _ . [NOZ]
SpeCIeS a — T Ta T h a —hy T T h =4n—-r,—rn,
d[Estane] __ . d[GasE] d[Carbon] __
——=-n; =7.1r; ——=8.1,+r, +1.6r;
dHMX] _ [Gasx,] d[GasXZ]
o =T, — L =11.5r; —**=10r,
P pP= [H,0] . _ [BDNPA/F] . _ [Estane
rOgreSS 1™ 0uy0,Pb0/MWipo, > 72 7 OppxearPso/ MWepNeAE T 2 T OkgtanePb o/ MWeane

P =P= [HMX]

OyunxPp o/ MWinx

Acronym* Composition
BDNPA/F  bis(2.2-dinitropropyljacetal/formal (50/50)
CEF tris-fi-chloroethylphosphate

EDC-29 [[95 wts HMX, and 5 wit% polvurcthane
EDC-37 |91 wt% HMX, 9 wt% o0il and nitrocellulose
Estane” a polyurethane thermoplastic

FEFO 1.1*-[methylenebis(oxy)|bis[2-fluorn-2
HMX | octahydro-1 2,5 7-tetranitro-1.3 5. 7-tetrazocine

XA 85 wt% HMX and 15 wt Viton A

90 wt% HMX and 10 wt%% Viton A

93% HMX. 4.6% pDNPA, and 2.4 wt% FEFO

95 wt% HMX and 5 wts Viton A

95.5 with HMX and 4.5 wt% Estane”

Nitrocellulose

90 wt% HMX and 10 wt% Estanc”

4% HMX. 3% CEF. 3% nitrocellulose

95 wt% HMX, 2.5 wt% Estanc”. 2.5 wt% BDNPA/F
2.2- dinitropropyl acrylate

2-dinitroethane|

pDNPA

Viton A vinylidine fluoride/hexaflvoropropylene copolymer

"X—OZ’S “97.5‘1— HMX and 2.5 wt% Kraton oil

* Green (endothermic binder). Yellow (exothermic binder)

Need to account for HMX molar volume and binder reactivity

3




One-dimensional time-to-explosion (ODTX) ) e

LLNL’s ODTX experiment Measured/Predicted Ignition time
Aluminum Anvil SAEMNMNLEN BLALELNLE BLNLELELE ELRLELNL DL BLNRNRELE RLRLNLNE
e 105 F PBX 9501 -
Cu PBX Cu wn R _f
<] q; S %
E L :
+—
- N
QO F 3
- E
c L ;
o f
10°F95/2,5/2.5 HMX/Estane/BDNPA-F

1.7 1000/T,K' 2.2
The thermal expansion is about 14 time greater for the binder than
HMX. As the PBX 9501 gets hot, the binder is extruded to the edge,

where the binder energy is dissipated by the conductive aluminum. 4




Sandia Instrument Thermal Ignition (SITI) ) i,
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Boroscope in SITI with PBX 9501 )

Exp 444 (vented)

Exp 445 (sealed\)
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For unconfined decomposition, bmder migrates to the edge. A
wetted surface provides better heat transfer for the vented case. 6




PBX 9501 molding powder (46% TMD) .
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Similar trend shown with 85% TMD SITI experiments. The binder is a
major player in cookoff of PBX 9501 for some systems but not all systems. .,




PBX 9501 pressed pellets (95% TMD)
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SITI Predicted vs. Measured Ignition Times ) e

Laboratories

(Symbols are data and lines are model)
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Nitroplasticizer migrates to explosive exterior for high density PBX 9




Validation with experiments from other labs (i) &=

Laboratories
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Model predicts scales from 2 g = 36 g = 2540 g. However, we need to
know volumes and working pressures accurately! 10




Other simulations )

Fast Slow

CSAFE (1.42 kg PBX) STEX (705 g PBX)
Run 8 power = 640 W Run 27 with thin walls
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Need accurate boundary conditions, ullage, vessel working pressure. "




PBX 9501 model applied to explosives in ODTX )

National
Nonreactive binder assumption works best in ODTX, possible due to aboatores
extruding binders. SITI experiments should give more insight.
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LX-14 has higher reactivity than PBX 9501 ) i

Laboratories

Tough urethane binder in LX-14 retains gases better than the soft binder in PBX 9501
causing increased gas phase rates that are pressure dependent.

A) PBX 9501 (p_ = 860 kg/m?) B) PBX 9501 run 413s C) PBX 9501 run 414v
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Summary and Conclusions )

Laboratories

A model developed for cookoff of PBX 9501 has been applied to neat HMX and
11 PBXs containing HMX (EDC-29, EDC-37, LX-04, LX-07, LX-09, LX-10-0, LX-14,
PBX 9011, PBX 9404, PBX 9501, and X-0298) by accounting for the molar
volume of HMX and the reactivity of the binder.

The model with an inert binder matched ODTX data best.

Borescope images in SITlI show that the binder extrudes to the outer explosive
edge where the binder energy is quickly dissipated by the conductive Aluminum.

We initially suspected that PBX 9501 would be more reactive than LX-14 due to
the energetic binder. Our experiments show the opposite trend. We believe the
brittle polyurethane binder in LX-14 retains reactive gases better than the softer
binder in PBX 9501 resulting in faster ignition times.

Binder mechanics may be more important than thermicity of the binder.




