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Binder	Effects	During	Cookoff	of	HMX

Model on PBX 9501 (Combustion and Flame 173, 2016) applied to other HMX based PBXs
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Why	model	cookoff?

§ Need	to	know	behavior	in	accidental	fires	to	assess	safety.
§ Need	to	know	the	time-to-ignition for	safety	timing	studies.
§ Need	to	know	the	amount	of	gas	produced	to	determine	if	

confinement	will	rupture	before	ignition.
§ Need	to	know	how	the	damaged	state	of	the	material	affects	

the	subsequent	burn	behavior.
§ Ignition	time,	gas	production,	burn	behavior	are	all	affected	

by	confinement variables	such	as	venting,	density,	
permeability,	and	ullage.

2Tremendous	cost	considering	none	were	under	attack!

Carrier Deaths Injured Cost
Oriskany,	1966 44 156 $63.6M
Forestal,	1967 134 162 $758M
Enterprise,	1969 28 343 $554M
Nimitz,	1981 14 48 $150M

220 709 $1525M
Atwood et al, “Experimental Support of a Slow Cookoff Model Validation effort,” 
2004 Insensitive Munitions & Energetic materials Technology Symposium (2004).



Applying	PBX	9501	model	to	other	PBXs
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H2Oa
1⎯→⎯ H2Og

BDNPA/F 2⎯→⎯ NVR + 4NO2

Estane + NO2
3⎯→⎯ 7.1 GasE + 8.1 Carbon

HMX+ NO2
4⎯ →⎯ 11.5 Gasx1 +Carbon

HMX 5⎯→⎯ 10 Gasx2 +1.6 Carbon
r1 = A1 exp

−E1+ζσ1
RT( ) H2O[ ]

r2 = A2 exp
−E2+ζσ 2

RT( ) BDNPA/F[ ]
r3 = A3 P

Po( )n3 T m3 exp −E3+ζσ 3
RT( ) Estane[ ] NO2[ ]

r4 = A3 P
Po( )n4 T m4 exp −E4+ζσ 4

RT( ) HMX[ ] NO2[ ]
r5 = A5 P

Po( )n5 T m5 exp −E5+ζσ 5
RT( ) HMX[ ]

d H2Oa[ ]
dt = −r1;  d H2Og⎡⎣ ⎤⎦

dt = r1;  d BDNPA/F[ ]
dt = −r2;  d NVR[ ]

dt = r2;  d NO2[ ]
dt = 4r2 − r3 − r4

d Estane[ ]
dt = −r3;  d GasE[ ]

dt = 7.1r3;  d Carbon[ ]
dt = 8.1r3 + r4 +1.6r5

d HMX[ ]
dt = −r4 − r5;  d GasX1[ ]

dt = 11.5r4;  d GasX2[ ]
dt = 10r5

P1 =
H2O[ ]

ωH2Oaρb ,o /MwH2Oa
;  P2 =

BDNPA/F[ ]
ωBDNPA/Fρb ,o /MwBDNPA/F

;  P2 =
Estane[ ]

ωEstaneρb ,o /MwEstane

P4 = P5 =
HMX[ ]

ωHMXρb ,o /MwHMX

Single	model 12	explosives

Need	to	account	for	HMX	molar	volume	and	binder	reactivity
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One-dimensional	time-to-explosion	(ODTX)
LLNL’s ODTX experiment Measured/Predicted Ignition time

The	thermal	expansion	is	about	14	time	greater	for	the	binder	than	
HMX.	As	the	PBX	9501	gets	hot,	the	binder	is	extruded	to	the	edge,	
where	the	binder	energy	is	dissipated	by	the	conductive	aluminum.	
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Sandia	Instrument	Thermal	Ignition	(SITI)
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Small	ullage

Binder	leaves	high	density	explosive	and	decomposes	on	heated	boundary

Large	ullage
with	borescope Binder

extrusion

1.78	g/cc	(96%	TMD)

1.58	g/cc	(85%	TMD)



Boroscope in	SITI	with	PBX	9501

6

tu
bi

ng
 to

 g
au

ge

Thermocouples

Head space

O-ring

PBX

Camera

AluminumAluminum

Circuit board
Circuit board

Kapton gasket

For	unconfined	decomposition,	binder	migrates	to	the	edge.	A	
wetted	surface	provides	better	heat	transfer	for	the	vented	case.
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PBX	9501	molding	powder	(46%	TMD)
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Similar	trend	shown	with	85%	TMD	SITI	experiments.	The	binder	is	a	
major	player	in	cookoff	of	PBX	9501	for	some	systems	but	not	all	systems.
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PBX	9501	pressed	pellets	(95%	TMD)
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Sealed

Is	this	evidence	of	binder	extrusion?
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SITI	Predicted	vs.	Measured	Ignition	Times
(Symbols	are	data	and	lines	are	model)
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Nitroplasticizer migrates	to	explosive	exterior	for	high	density	PBX
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Validation	with	experiments	from	other	labs
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Model	predicts	scales	from	2	g	à 36	g	à 2540	g.	However,	we	need	to	
know	volumes	and	working	pressures	accurately!	



Other	simulations
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Need	accurate	boundary	conditions,	ullage,	vessel	working	pressure.



PBX	9501	model	applied	to	explosives	in	ODTX
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Nonreactive	binder	assumption	works	best	in	ODTX,	possible	due	to	
extruding	binders.	SITI	experiments	should	give	more	insight.



LX-14	has	higher	reactivity	than	PBX	9501
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Tough	urethane	binder	in	LX-14	retains	gases	better	than	the	soft	binder	in	PBX	9501	
causing	increased	gas	phase	rates	that	are	pressure	dependent.



Summary	and	Conclusions
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• A	model	developed	for	cookoff	of	PBX	9501	has	been	applied	to	neat	HMX	and	
11	PBXs	containing	HMX	(EDC-29, EDC-37, LX-04, LX-07, LX-09, LX-10-0, LX-14, 
PBX 9011, PBX 9404, PBX 9501, and X-0298) by accounting for the molar 
volume of HMX and the reactivity of the binder.

• The	model	with	an	inert	binder	matched	ODTX	data	best.
• Borescope	images	in	SITI	show	that	the	binder	extrudes	to	the	outer	explosive	

edge	where	the	binder	energy	is	quickly	dissipated	by	the	conductive	Aluminum.
• We	initially	suspected	that	PBX	9501	would	be	more	reactive	than	LX-14 due	to	

the	energetic	binder.	Our	experiments	show	the	opposite	trend.	We	believe	the	
brittle	polyurethane	binder	in	LX-14	retains	reactive	gases	better	than	the	softer	
binder	in	PBX	9501	resulting	in	faster	ignition	times. 

• Binder	mechanics	may	be	more	important	than	thermicity	of	the	binder.

Internal	gas	generation	in	closed	pore	system	leads	to	failure.


