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Why Color Centers in Diamond?

2

- Color centers (defects) in diamond include NV-, SiV plus 
many more…

A. M. Berhane et al., APL 106, 171102 (2015)

Electrically driven SiV Readout of single NV spin

B. J. Shields et al., PRL 114,136402 (2015)

Single-protein spin resonance

F. Shi et al., Science 347, 1135 (2015)

- Key question  How to produce a single color center where you want it?

- Wide range of application from metrology to 
quantum computation

2.) Yield

1.) Location We will use focused ion beam implantation and
single ion detection to determine both location 
and yield with high accuracy

SiV in diamond

I. Aharonovich et al., Rep. Prog. Phys. 74,076501 (2011)



Fabrication – SNL nanoImplanter (nI)

100 kV FIB 10nm spot

ExB

- ExB Filter (Wien Filter)

- Focused ion beam system (FIB)

nm beam spot size on target

- Fast blanking and chopping

- Direct-write lithography

Multiple ion species

Single ion implantation

nm targeting accuracy 

Sb Source: Mass Spectrum

 Li, Si, P, Sb, etc… (separating out 28Si, 29Si, etc…)

- Low temperature stage

- In-situ electrical probes
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SNL nanoImplanter (nI) - Sources

Green – demonstrated at other labs
Gray – demonstrated at SNL
Yellow – attempting at SNL

After  A. Weick University of Bochum

Wide Varity of Ion Species Available
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Diamond Nanobeams (SNL/Harvard collaboration) 
100 kV FIB 10nm spot

ExB

Implant Ions

SiV fluorescence

Location Problem is Solved

2D Photonic Crystals (SNL/MIT collaboration) 

Targeting accuracy is spot 
size limited to 10’s  of nm

- Variable energy 10-200 keV

 Single ion implantation

- Mass-Velocity Filter (ExB)

SNL NanoImplanter (nI)

 nm targeting accuracy

 Liquid metal alloy ion source

- Direct write lithography platform

D. Perry (SNL)

T. Schroder, M. E. Trusheim, and D. Englund

A. Sipahigil, R. Evans, D. Sukachev, H. Atikian, M. Loncar and M. Lukin

 1/3 Periodic Table

A. Sipahigil et al., Science (2016)

arXiv:1610.09492 accepted into Nature Comm.
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Yield: Mapping SiV Photoluminescence

<50> ions/spot <20> ions/spot 

Yield is low and distribution 
matches Poisson statistics
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Yield = # measured SiV / # implanted Si

S. Tamura et. al.  Appl. Phys. Express 7, 115201 (2014)

S. Sangtawesin et. al. Appl. Phys. Lett. 105, 063107 (2014)

Similar yield to
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How to Improve the Activation Yield?

Single Ion Detectors to Understand Yield

Sequential Implantation to Improve the Yield

- Yield limited by the number of accessible vacancies

 Improve yield by producing excess vacancies in the immediate 
neighborhood of the implanted Si

 Improve yield understanding by directly counting the number of implanted ions

Silicon

Translating single 
ion detection to 
diamond

Diamond

Abraham et al, APL 109, 063502 (2016)
J.A. Seamons, et. al. Appl. Phys. Lett, 93, 043124 (2008)
E Bielejec, et. al. Nanotechnology 21, 085201 (2010)



Using Diamond Detectors to Understand Yield
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Yield = # measured SiV / # implanted Si
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Abraham et al, APL 109, 063502 (2016)



IBIC Map

<0.2> ion

Quantized Detection

Single Ion Counting

<0.65> ion

Signal amplitudes match 
Poisson statistics to 4%

��� =
������

������ + ������

Optimizing gain
for single ion
detection

Single Ion Detection in 
Diamond with SNR ~10
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Abraham et al, APL 109, 063502 (2016)
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Legend:

Device Characterization

Timed Implants

Counted Implants

Questionable Devices
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Timed SiV Arrays
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Counted SiV Arrays
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Yield Improvement - Sequential Implantation

I. Aharonovich et al., Rep. Prog. Phys. 74,076501 (2011)
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1.) Align to markers

2.) Implant 50 keV Li area

3.) Switch to Si beam, realign

4.) Implant 200 keV Si spots

Alignment with <20 nm resolution

200 keV Si Implant

Use the direct write capability of the nI to introduce excess C 
vacancies at the appropriate depth relative to the Si implants



Sequential Implantation Experiment

Li Si

Li+Si PL

Li defect spectrum is broad 
across SiV emission band 
“B band”

Li Only PL

Implant Li to create vacancies, 
then Si  SiV

Unexpected Li emission 
One reference to unpublished work

M. E. Trusheim, T. Schroder and D. Englund



Next step for Sequential Implantation

Sequential implant
Species

Fluorescence 
background

Systems with 
Spatial Control

Light Ions (H, He, Li) Yes Excellent - 1 nm with 
HeIM

Carbon
No Fair - 1 um with 

Tandem and nI
(needs source 
development)

Electrons(>100 keV ) No Requires
Development

Choosing the source of vacancies:

Increase # of vacancies without introducing background luminescence

 First samples made and annealed, measurement on-going
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Sequential Implantation Experiment #2

Order of implants
- 1.2 MeV C
- 2 MeV Si

1.2 MeV C
874+/-50 nm
262 vac/ion

2 MeV Si
874+/-60 nm
977 vac/ion

Potential issue with high 
vacuum anneal – we do not 

observe any SiV centers



Conclusions
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1.) Location  solved using focused ion implantation

2.) Yield  on-going effort to understand yield issues through

How to produce a single color center where you want it?

Counted implantation demonstration

Sequential implantation with C/Si measurement on-going
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SiV Spectrum

700 800

0

250

500

750

1000

C
o

u
n

ts

Wavelength (nm)

 Laser on SiV
 Laser on Background
 SiV Signal

200 400 600 800 1000 1200

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

C
o

u
n

ts

Wavelength (nm)

 Laser on SiV
 Laser on Background
 SiV Signal

0.725 0.730 0.735 0.740 0.745 0.750

0.175

0.180

0.185

0.190

0.195

0.200

0.205

Y
 (

m
m

)

X (mm)

2.200E+04

2.904E+04

3.608E+04

4.312E+04

5.016E+04

5.720E+04

6.424E+04

7.128E+04

7.832E+04

8.536E+04

9.240E+04

9.944E+04

1.065E+05

1.135E+05

1.206E+05

1.276E+05

1.346E+05

1.417E+05

1.487E+05

1.558E+05

1.628E+05

1.698E+05

1.769E+05

1.839E+05

1.910E+05

1.980E+05

<30> Dense Array



-10 -8 -6 -4 -2 0 2 4 6 8 10

0

20

40

60

80

100

C
C

E

Y Position (m)

Experimental IBIC vs. Simulation

19

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

20

40

60

80

100

C
C

E

Y Position (m)

Experimental IBIC Dataset Simulation – No damage

Experimental curve ≠ predicted curve

 Shape is incorrect

How to account for these differences?  Reduce Bulk Lifetime

� = ��⃗ �
��

��



Reducing the Bulk Lifetime
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Experimental curve ≠ predicted curve

 Shape is incorrect and is not simply just a 
function of bulk lifetime

How to account for these differences?  Lifetime vs Depth
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Depth Dependent Lifetime
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 Model the damage as a reduced lifetime only 
near the sub-surface region of the detectors

Detectors probe sub-surface damage

Abraham et al, APL 109, 063502 (2016)
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How do we fabricate  the SiV Centers?
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m-PL from focused ion 
implanted SiV centers

Surface Clean/Oxygen Termination

Vacuum anneal to 
create SiV centers

All New Capability Developed at the CINT User Facility

PL from SiV-

CINT fab to prepare the samples, Si ion 
implantation at IBL
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J. Nogan, W. Ross, A. James, D. Webb (CINT)

Electronic Grade Diamond Substrates



Fabrication
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100 µm

Co-planar
Surface
Electrode
Detector

• Varied width and gap spacing
• 50-125 um width
• 2 – 10 um gaps

• 200 nm Ti/Pt/Au Electrodes

• Electronic grade single crystal 
diamond (Element 6)

Width

Gap

Process
1. RIE Ar/Cl2:O2
2. Piranha Clean (20 min)
3. Dehydration bake 180C  (5 min)
4. Mount Sample on 1 um Oxide 

Si wafer with PMMA
5. Bake 180C (1 min)
6. Spin HMDS (4K, 30 sec)
7. Bake 90C (90sec)
8. Spin AZ5214EZ (4K, 30 sec)
9. Bake 90C (90 sec)
10. MA6 Aligner (Hard Contact, 5 

sec exposure)
11. AZ400K 1:4 Developer (40 sec 

– over developed)
12. Descum – 10 W, 3 min
13. Metalization (Ti/Pt/Au, 

30/50/100 nm)
14. Acetone 30 min with spray
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Electron Beam Induced Current (EBIC)

EBIC datasets match the predicted response
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I. Aharonovich et al., Rep. Prog. Phys. 74,076501 (2011)

What are Color Centers in Diamond?
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- Range of defect complexes – such as NV, SiV

- Diamond substrate with 5.5 eV band gap – allows 
RT operation of the defect centers

SiV
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Applications for Color Centers in Diamond
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SiV Single Photon Source Readout of single NV spin

B. J. Shields et al., PRL 114,136402 (2015)Y. Liu et al., Opt. Express  23, 032961 (2015)

“Artificial Atoms” in Diamond at Ambient Conditions!



What is the Problem?
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1.) Location: 2.) Yield:

- Need to demonstrate  spatial control for 
device integration

- Low color center yield will limit 
device yield 

SiV fluorescence
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is ~3%

How to produce a single color center where you want it?

Cavity applications need <100 nm

We use focused ion beam implantation and single ion detectors
to engineering the color centers



Characterization – Photoluminescence of SiV-
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TCAD/SRIM Modeling of the Detectors
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Detectors are optimized for sub-surface detection
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Current Understanding of Yield

����� =
#����� ������� ��������

# ���������� ���������
#���������, ������ ����������, �ℎ���� �����

Forming the Center Occupation of the center

60 keV 15N2

60 keV 15N2 + 40 keV 12C

50% improvement
Co-Implantation:

Anneal Parameters:

Charge State:

25% improvement with combined 
elevated temperature + C implant

Naydenov et al. Appl. Phys. Lett. 96, 163108 (2010)

Schwartz et al., New J. Phys. 13 (2011) 035022

Schreyvogel, C. et al., Sci. Rep. 5, 12160 (2015)

Tuning the  occupation 
of states via reverse
bias
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Yield Improvement – Introduce Excess Vacancies
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At Si depth create 
additional 90 vac/ion

At Si depth create 
400 vac/ion

1.) Align to markers

2.) Implant 50 keV Li area

3.) Switch to Si beam, realign

4.) Implant 200 keV Si spots

Alignment with <20 nm resolution

Use the direct write capability of the nI to introduce excess C 
vacancies at the appropriate depth relative to the Si implants

200 keV Si 200 keV Si + 50 keV Li



Quantum Nano-photonics

32(SNL/Harvard collaboration)

A. Sipahigil et al., Science (2016)

A. Sipahigil, R. Evans, D. Sukachev, H. Atikian, M. Loncar and M. Lukin

SiV integrated with  diamond cavities

Ch. 1: 737 nm tunable probe

Ch. 2: SiV Control and 
Characterization (red)

Ch. 3: Transmission (blue)

3 SiV coupled to the cavity


