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Aerosol Deposition (AD) Process

 Room temperature deposition process.

 Deposits thick and dense films (>5 um) 
of metal, ceramic, polymer, and 
composites.

 Utilizes micron-submicron sized 
powders to impact, plastically deform, 
and bond to the substrate.

 Vacuum environment increases and 
maintains particle velocity.
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Aerosol Deposition (AD) Process

 Deposition methods
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Characteristics of various deposition processes

Process Parameters PVD [1] Aerosol 
Deposition

Thermal Spray

Temperature >500 °C 20 °C >1000 °C

Pressure <10-2 torr <10 torr 760 torr (1 atm)

Max Film Thickness 1 μm 100 μm 1 mm

Feedstock Granule Micropowder Powder

Substrate prep Clean/smooth None Grit blasting

Transport phase Vapor Solid Solid/Liquid

Particle Size Molecular <5 um 40 um

Deposition rate μm/hr μm/min μm/s

Gas consumption none 10 SLPM 50 SLPM



AD Powders Characteristics

 Utilizes micron to submicron powders

 Not intuitive whether a powder will deposit well
 Agglomeration

 Compressibility index [2]
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AD Powders

 Larger Particles (>400 nm)
 Show evidence of plastic 

deformation in the form of 
“pancake” structure.

 Can damage the substrate if 
highly agglomerated.

 Small particles (<200 nm)
 Adhere to the substrate poorly

 Retain their initial structure
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Velocity of Gas & Particles

 Different Nozzles
 Choked flow

 Gas expansion

 “Critical velocity”

 Particle size and density
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Kinetic Theory of Gases

 Approximations of drag on particles

 Neglect change in gas viscosity

 Molecular weight of gas
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Metallic Electrical Interconnects

 Easy to deposit metals
 High plasticity of particles

 Films over 100 um

 Patterned by direct applied masks
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Metallic Electrical Interconnects

 Oxide content approximation (EDX images of Cu/Ni)

 Resistivity approximations
 Nordheim’s equation (mixing rule)

 Grain boundary scattering

 Resistivity measurements
 Four point probe method

 In-situ measurement
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Thermal & Electrical Barriers

 Limits thermal damage
 Maintain room temperature phases

 Phonon scattering on grain boundaries

 Prevent conduction between surfaces

 Allow high temperature circuitry
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Dielectric Materials

 Dielectric Constant

 Barium Titanate
 Ferroelectric property

 Polarization mechanisms
 Frequency dependence

 Dependence on grain size
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Multilayered Ceramic Capacitors

 Combines electrical interconnects and insulating barriers

 Directly applied electronic components
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Stress in AD Films

 High film stress
 Substrate bending

 Film delamination
 Poor anchoring layer

 Stress higher than adhesion force

 Mitigation
 Annealing

 Energetic milling
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Conclusion

 Uniqueness of AD Process
 Room temperature

 Multi-material

 Nanocrystalline structure

 Future Work
 Develop process for higher deposition efficiency

 Property measurements

 Explore materials for AD
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