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• I have worked on model reduction for 
compressible flows since 2007. 
→ focus on ROM stability 

• This talk surveys some of the approaches for 
building stable ROMs I have helped to develop. 
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Online Real-time analysis 

• Three underlying mathematical premises of projection-based model 
order reduction (MOR): 

 

1. Compression: solution of governing parametric PDE or system of 
PDEs lies in a subspace of significantly lower dimension. 
 
 

2. Offline training: subspace can be identified/learned offline via 
training simulation and high-fidelity model can be reformulated 
with respect to this subspace. 
 
 

3. Online prediction:  identified parametric ROMs are capable of 
providing new solutions at a fraction of the computational cost. 



Proper Orthogonal Decomposition (POD)/ 
Galerkin method to model reduction 

• Snapshot matrix: 𝑿 = (𝒙1, …, 𝒙𝐾) ∈ ℝ𝑁𝑥𝐾 

• SVD: 𝑿 = 𝑼𝜮𝑽𝑇 

• Truncation: 𝜱𝑀 = (𝝓1, … , 𝝓𝑀) = 𝑼 : , 1:𝑀  

FOM = full order model 
𝑁 = # of dofs in FOM 
𝐾 = # of snapshots 
𝑀 = # of dofs in ROM  
(𝑀 <<  𝑁, 𝑀 <<  𝐾) 

High fidelity CFD 
simulations: 

 
 

Snapshot 1 
Snapshot 2 

⋮ 
Snapshot K 

Fluid modal decomposition 
(POD): 

 
 

𝒖(𝒙, 𝑡) ≈  𝑎𝑀,𝑘 𝑡

𝑀

𝑘=1

𝝓𝑘(𝒙) 

Galerkin projection  
of fluid PDEs: 

 
 

𝝓𝑘 , 𝒖 + 𝛻 ∙ 𝑭(𝒖) = 0 

“Small” ROM ODE system: 
 
 

𝑎 𝑀,𝑘 = 𝑓(𝑎𝑀,1, … , 𝑎𝑀,𝑀) 

Step 1 Step 2 

Basis energy = 
 𝜎2𝑀
𝑖=1  
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are for incompressible flow. 
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• Stability of a ROM is commonly evaluated a posteriori – RISKY! 
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Continuous Projection Discrete Projection 

Change projection 
(a priori) 

Energy inner products (Rowley et 
al., Serre et al., IKT et al.) 

Energy inner products (Rowley, et al.), 
Petrov-Galerkin Projection (Carlberg et 

al.)  

Change ROM equations 
(a posteriori) 

Linear/nonlinear turbulence 
modeling (Iliescu, Borggaard, Xie, 

Wang, …) 

Eigenvalue reassignment (IKT et al.) 
 

Change ROM basis 
(a posteriori) 

Basis rotation (Balajewicz, IKT, et al.) Optimization-based right basis 
modificatiOon (Amsallem) 
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representing global kinetic energy (𝐸 =
1

2
| 𝒖 |2

2).   
 

→ 𝐿2 inner product is physically sensible, since POD modes represent optimally 
kinetic energy present in the ensemble from which they are constructed: 
 

𝒖 =  𝑎𝑖(𝑡)𝝓𝑖
𝑀
𝑖=1    ⇒     2𝐸 = (𝑢, 𝑢) =  𝑎𝑖(𝑡)𝝓𝑖

𝑀
𝑖=1  
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Numerical solutions must maintain proper energy balance. 

• Stability of ROM is intimately tied to choice of inner product for the Galerkin projection 
(Rowley et al., 2004; Barone & IKT, 2009; Serre et al., 2012).  

 

• Norm induced by inner product in which ROM is constructed should correspond to 
energy measure for system. 

 

• Incompressible flow: solution vector is 𝒖 ⇒ 𝐿2 inner product induces norm 

representing global kinetic energy (𝐸 =
1

2
| 𝒖 |2

2).   
 

→ 𝐿2 inner product is physically sensible, since POD modes represent optimally 
kinetic energy present in the ensemble from which they are constructed: 
 

𝒖 =  𝑎𝑖(𝑡)𝝓𝑖
𝑀
𝑖=1    ⇒     2𝐸 = (𝑢, 𝑢) =  𝑎𝑖(𝑡)𝝓𝑖

𝑀
𝑖=1  

Not the case for compressible flow! 



Energy-stability 

• Energy inner product ∙,∙ 𝐸 is one that 
 
 

• For linear system: leads to semi-boundedness of linear operator 𝐿 w.r.t. inner 
product ∙,∙ 𝐸, i.e.,  
 

𝑑𝒖𝑀

𝑑𝑡
, 𝜙

𝐸
= 𝐿𝒖𝑀, 𝜙 𝐸,  ∀𝜙 ∈ ℋ 

 
 

→ leads to stability estimate 
1

2

𝑑

𝑑𝑡
||𝒖𝑀||𝐸

2 ≤ 𝛼 𝒖𝑀 𝐸

2
 

 
 

• For nonlinear system: induces norm that represents global energy quantity 
(e.g., kinetic energy, stagnation energy, total energy, etc.).  
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• For nonlinear system: induces norm that represents global energy quantity 
(e.g., kinetic energy, stagnation energy, total energy, etc.).  

Practical implication of energy-stability analysis:  
energy inner product ensures that any “bad” modes will not introduce spurious 

non-physical numerical instabilities into the Galerkin approximation. 
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product ∙,∙ 𝐸, i.e.,  
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• For nonlinear system: induces norm that represents global energy quantity 
(e.g., kinetic energy, stagnation energy, total energy, etc.).  

Practical implication of energy-stability analysis:  
energy inner product ensures that any “bad” modes will not introduce spurious 

non-physical numerical instabilities into the Galerkin approximation. 

• Stability-preserving inner product derived using the energy method: 
 

• Defines numerical solution energy 𝐸𝑀 ≡
1

2
||𝒖𝑀|| 𝐸 

2 and bounds it in a physical way.   

• Borrowed from spectral methods community. 
 

• Analysis is straightforward for ROMs constructed via continuous projection. 



Outline 

1. Motivation. 
 
 
 

2. Projection-based model order reduction. 
 
 

3.   Targeted application: compressible cavity flow. 
 
 
 

4.   Approaches for building a priori stable ROMs. 
(a) Energy-stable linearized compressible flow ROMs. 
(b) Energy-stable nonlinear compressible flow ROMs. 
 
 

5.   Approaches for stabilizing a posteriori unstable ROMs. 
(a) Eigenvalue reassignment (Linear Time-Invariant systems). 
(b) Basis rotation (nonlinear compressible flow). 
 
 

6. Summary/perspectives. 
 
 

7.   Ongoing/future work. 
with: Matt Barone (SNL),  
Srini Arunajatesan (SNL) 

Continuous Projection Discrete Projection 

Change projection 
(a priori) 

Energy inner products (Rowley et 
al., Serre et al., IKT et al.) 

Energy inner products (Rowley, et al.), 
Petrov-Galerkin Projection (Carlberg et 

al.)  

Change ROM equations 
(a posteriori) 

Linear/nonlinear turbulence 
modeling (Iliescu, Borggaard, Xie, 

Wang, …) 

Eigenvalue reassignment (IKT et al.) 
 

Change ROM basis 
(a posteriori) 

Basis rotation (Balajewicz, IKT, et al.) Optimization-based right basis 
modificatiOon (Amsallem) 



Linearized compressible flow equations 
Energy-Stability for Linearized PDEs:  

FOM linearly stable ⇒ ROM built in energy inner product linearly stable (𝑅𝑒(𝜆) < 0) 
(Barone et al. 2009,  IKT et al. 2012) 

𝒙 𝑁 = 𝑨𝑁𝒙𝑁 𝒙 𝑀 = 𝑨𝑀𝒙𝑀 



Linearized compressible flow equations 
Energy-Stability for Linearized PDEs:  

FOM linearly stable ⇒ ROM built in energy inner product linearly stable (𝑅𝑒(𝜆) < 0) 
(Barone et al. 2009,  IKT et al. 2012) 

Linearized compressible Euler/Navier-Stokes equations are appropriate 
when a compressible fluid system can be described by small-amplitude 

perturbations about a steady-state mean flow. 

𝒙 𝑁 = 𝑨𝑁𝒙𝑁 𝒙 𝑀 = 𝑨𝑀𝒙𝑀 



Linearized compressible flow equations 
Energy-Stability for Linearized PDEs:  

FOM linearly stable ⇒ ROM built in energy inner product linearly stable (𝑅𝑒(𝜆) < 0) 
(Barone et al. 2009,  IKT et al. 2012) 

𝜌,𝑡 + (𝜌𝑢𝑗),𝑗 = 0 

(𝜌𝑢𝑖),𝑡+(𝜌𝑢𝑖𝑢𝑗),𝑗 + 𝑝,𝑖 − 𝜏𝑖𝑗,𝑗 = 0 

(𝜌𝑒),𝑡+ 𝑝𝑢𝑖 ,𝑖 − 𝑢𝑖𝜏𝑖𝑗 ,𝑗 = 0 

Full non-linear 
compressible 

flow equations 

𝒙 𝑁 = 𝑨𝑁𝒙𝑁 𝒙 𝑀 = 𝑨𝑀𝒙𝑀 



Linearized compressible flow equations 

 
• Linearization of full compressible Euler/Navier-Stokes equations obtained as follows: 
 

1. Decompose fluid field as steady mean plus unsteady fluctuation 
 

𝒒 𝒙, 𝑡 = 𝒒 𝒙 + 𝒒′(𝒙, 𝑡) 
 

2. Linearize full nonlinear compressible Navier-Stokes equations around steady 
mean to yield linear hyperbolic/incompletely parabolic system 

 

Energy-Stability for Linearized PDEs:  
FOM linearly stable ⇒ ROM built in energy inner product linearly stable (𝑅𝑒(𝜆) < 0) 

(Barone et al. 2009,  IKT et al. 2012) 

𝒒′ + 𝑨𝑖 𝒒 
𝜕𝒒′

𝜕𝑥𝑖
−

𝜕

𝜕𝑥𝑗
𝑲𝑖𝑗(𝒒 )

𝜕𝒒′

𝜕𝑥𝑖
= 𝟎 

𝒒 = fluid solution vector 
(e.g., 𝒒𝑇 = (𝑢1, 𝑢2, 𝑢3, 𝑇, 𝜌)) 

𝜌,𝑡 + (𝜌𝑢𝑗),𝑗 = 0 

(𝜌𝑢𝑖),𝑡+(𝜌𝑢𝑖𝑢𝑗),𝑗 + 𝑝,𝑖 − 𝜏𝑖𝑗,𝑗 = 0 

(𝜌𝑒),𝑡+ 𝑝𝑢𝑖 ,𝑖 − 𝑢𝑖𝜏𝑖𝑗 ,𝑗 = 0 

Full non-linear 
compressible 

flow equations 

𝒙 𝑁 = 𝑨𝑁𝒙𝑁 𝒙 𝑀 = 𝑨𝑀𝒙𝑀 



Energy-stable ROMs for linearized 
compressible flow 

Linearized compressible Euler/Navier-Stokes equations are symmetrizable 
(Barone & IKT, 2009; IKT & Arunajatesan, 2012). 



Energy-stable ROMs for linearized 
compressible flow 

• There exists a symmetric positive definite matrix 𝑯 ≡ 𝑯 𝒒  (system “symmetrizer”) s.t.: 
  

• The convective flux matrices 𝑯𝑨𝑖 are symmetric 
 

• The following augmented viscosity matrix is symmetric positive semi-definite 
 
 

𝑲𝑠 =
𝑯𝑲11

𝑯𝑲21
𝑯𝑲31

  𝑯𝑲12

  𝑯𝑲22
  𝑯𝑲32

  𝑯𝑲13

  𝑯𝑲23
  𝑯𝑲33

 

 

Linearized compressible Euler/Navier-Stokes equations are symmetrizable 
(Barone & IKT, 2009; IKT & Arunajatesan, 2012). 



Energy-stable ROMs for linearized 
compressible flow 

• There exists a symmetric positive definite matrix 𝑯 ≡ 𝑯 𝒒  (system “symmetrizer”) s.t.: 
  

• The convective flux matrices 𝑯𝑨𝑖 are symmetric 
 

• The following augmented viscosity matrix is symmetric positive semi-definite 
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𝑯𝑲31

  𝑯𝑲12

  𝑯𝑲22
  𝑯𝑲32
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  𝑯𝑲23
  𝑯𝑲33

 

 
Symmetry Inner Product (weighted 𝐿2 inner product): 

𝒒1, 𝒒2 𝑯 =  𝒒1𝑯𝒒2𝑑Ω
Ω

 

Linearized compressible Euler/Navier-Stokes equations are symmetrizable 
(Barone & IKT, 2009; IKT & Arunajatesan, 2012). 



Energy-stable ROMs for linearized 
compressible flow 

• There exists a symmetric positive definite matrix 𝑯 ≡ 𝑯 𝒒  (system “symmetrizer”) s.t.: 
  

• The convective flux matrices 𝑯𝑨𝑖 are symmetric 
 

• The following augmented viscosity matrix is symmetric positive semi-definite 
 
 

𝑲𝑠 =
𝑯𝑲11

𝑯𝑲21
𝑯𝑲31

  𝑯𝑲12

  𝑯𝑲22
  𝑯𝑲32

  𝑯𝑲13

  𝑯𝑲23
  𝑯𝑲33

 

 
Symmetry Inner Product (weighted 𝐿2 inner product): 

𝒒1, 𝒒2 𝑯 =  𝒒1𝑯𝒒2𝑑Ω
Ω

 

• If ROM is built in symmetry inner product, Galerkin approximation will satisfy the same  
energy expression as continuous PDEs, e.g., it will be energy-stable:  
 

1

2

𝑑

𝑑𝑡
||𝒒′𝑀||𝑯

2 ≤ 𝛼 𝒒′𝑀 𝑯

2
 

Linearized compressible Euler/Navier-Stokes equations are symmetrizable 
(Barone & IKT, 2009; IKT & Arunajatesan, 2012). 



Symmetrizers for several hyperbolic/ 
incompletely parabolic systems 

• Wave equation:  𝑢 = 𝑎2
𝜕2𝑢

𝜕𝑥2
  or  𝒒 = 𝑨 

𝜕𝒒

𝜕𝑥
 where 𝒒 = 𝑢 ,

𝜕𝑢

𝜕𝑥
 

 
 

• Linearized shallow water equations:  𝒒′ + 𝑨𝑖 𝒒 
𝜕𝒒′

𝜕𝑥𝑖
= 𝟎 

 
 
 

• Linearized compressible Euler: 𝒒′ + 𝑨𝑖 𝒒 
𝜕𝒒′

𝜕𝑥𝑖
= 𝟎 

 
 

• Linearized compressible Navier-Stokes: 𝒒′ + 𝑨𝑖 𝒒 
𝜕𝒒′

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
𝑲𝑖𝑗(𝒒 )

𝜕𝒒′

𝜕𝑥𝑖
= 𝟎 

 

⇒ 𝑯 =
1 0
0 𝑎2

 

⇒ 𝑯 =

 
𝜙      0 0

0     𝜙 0
0     0 1

 

⇒ 𝑯 =

 
𝜌             0         0
0     𝛼2𝛾𝜌 2𝑝 𝜌 𝛼2

0    0           (1+𝛼
2)

𝛾𝑝 

 

⇒ 𝑯 =

 
𝜌             0         0

0           
𝜌 𝑅

𝑇 (𝛾 − 1)
 0

0          0           𝑅𝑇
 
𝜌 

 
• Barone & IKT, JCP, 2009. 
• IKT & Arunajatesan, WCCM X, 2012. 
• IKT et al., SAND report, 2014. 



• Consider linear discrete (i.e., discretized in space) stable full order model 

𝒙 = 𝑨𝒙 

• Lyapunov function for this FOM: 𝑉 𝒙 =  𝒙𝑇𝑷𝒙 where 𝑷 is the solution of the 
Lyapunov equation 

𝑨𝑇𝑷 + 𝑷𝑨 = −𝑸 

• S.p.d. solution to Lyapunov equation exists if 𝑸 is s.p.d. and 𝑨 is stable. 
• There are solvers for solving the Lyapunov equation, e.g., lyap function in 

MATLAB control toolbox. 

• Discrete analog of symmetry inner product: Lyapunov inner product (Rowley et 
al., 2004): 

𝒙1, 𝒙2 𝑷 ≡ 𝒙1
𝑇𝑷𝒙2 

• Can show: if ROM is constructed in Lyapunov inner product, it is energy-stable, i.e.,  

𝑑𝐸𝑁
𝑑𝑡

≡
1

2

𝑑

𝑑𝑡
| 𝒙𝑁 |2

2 ≤ 0 

Discrete counterpart of symmetry-inner  
product: Lyapunov inner product 



• Consider linear discrete (i.e., discretized in space) stable full order model 

𝒙 = 𝑨𝒙 

• Lyapunov function for this FOM: 𝑉 𝒙 =  𝒙𝑇𝑷𝒙 where 𝑷 is the solution of the 
Lyapunov equation 

𝑨𝑇𝑷 + 𝑷𝑨 = −𝑸 

• S.p.d. solution to Lyapunov equation exists if 𝑸 is s.p.d. and 𝑨 is stable. 
• There are solvers for solving the Lyapunov equation, e.g., lyap function in 

MATLAB control toolbox. 

• Discrete analog of symmetry inner product: Lyapunov inner product (Rowley et 
al., 2004): 

𝒙1, 𝒙2 𝑷 ≡ 𝒙1
𝑇𝑷𝒙2 

• Can show: if ROM is constructed in Lyapunov inner product, it is energy-stable, i.e.,  

𝑑𝐸𝑁
𝑑𝑡

≡
1

2

𝑑

𝑑𝑡
| 𝒙𝑁 |2

2 ≤ 0 

Discrete counterpart of symmetry-inner  
product: Lyapunov inner product 

Intractable for large 
problems (𝑂(𝑁3) ops! 



Steps to obtain stable ROM in symmetry i.p. 

• Galerkin-project equations using symmetry inner product: 
 
 

𝝓𝑘 ,
𝜕𝒒𝑀′

𝜕𝒕
𝑯

= − 𝝓𝑘𝑯 𝑨𝑖

𝜕𝒒𝑀′

𝜕𝑥𝑖
−

𝜕

𝜕𝑥𝑗
𝑲𝑖𝑗

𝜕𝒒𝑀′

𝜕𝑥𝑖
𝑑Ω

Ω

 

 



Steps to obtain stable ROM in symmetry i.p. 

• Galerkin-project equations using symmetry inner product: 
 
 

𝝓𝑘 ,
𝜕𝒒𝑀′

𝜕𝒕
𝑯

= − 𝝓𝑘𝑯 𝑨𝑖

𝜕𝒒𝑀′

𝜕𝑥𝑖
−

𝜕

𝜕𝑥𝑗
𝑲𝑖𝑗

𝜕𝒒𝑀′

𝜕𝑥𝑖
𝑑Ω

Ω

 

 

Remark: Galerkin projection 
in symmetry inner product is 
equivalent to Petrov-Galerkin 
projection with 𝜳𝑀 = 𝑯𝜱𝑀. 



Steps to obtain stable ROM in symmetry i.p. 

Remark: Galerkin projection 
in symmetry inner product is 
equivalent to Petrov-Galerkin 
projection with 𝜳𝑀 = 𝑯𝜱𝑀. 

Substitute BCs 

• Galerkin-project equations using symmetry inner product: 
 
 

𝝓𝑘 ,
𝜕𝒒𝑀′

𝜕𝒕
𝑯

= − 𝝓𝑘𝑯 𝑨𝑖

𝜕𝒒𝑀′

𝜕𝑥𝑖
−

𝜕

𝜕𝑥𝑗
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𝜕𝑥𝑖
𝑑Ω

Ω

 

 
• Integrate second term by parts and apply boundary conditions weakly: 
 

𝝓𝑘 ,
𝜕𝒒𝑀′

𝜕𝒕
𝑯

= − 𝝓𝑘𝑯𝑨𝑖

𝜕𝒒𝑀′

𝜕𝑥𝑖
+
𝜕𝝓𝑘

𝜕𝑥𝑗
𝑯𝑲𝑖𝑗

𝜕𝒒𝑀′

𝜕𝑥𝑖
𝑑Ω +  𝝓𝑘𝑯

𝜕Ω

𝑲𝑖𝑗

𝜕𝒒𝑀′

𝜕𝑥𝑖
𝑛𝑗𝑑𝑆

Ω

 

 



Steps to obtain stable ROM in symmetry i.p. 

Remark: Galerkin projection 
in symmetry inner product is 
equivalent to Petrov-Galerkin 
projection with 𝜳𝑀 = 𝑯𝜱𝑀. 

Substitute BCs 

• Galerkin-project equations using symmetry inner product: 
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• Integrate second term by parts and apply boundary conditions weakly: 
 

𝝓𝑘 ,
𝜕𝒒𝑀′

𝜕𝒕
𝑯

= − 𝝓𝑘𝑯𝑨𝑖

𝜕𝒒𝑀′

𝜕𝑥𝑖
+
𝜕𝝓𝑘

𝜕𝑥𝑗
𝑯𝑲𝑖𝑗

𝜕𝒒𝑀′

𝜕𝑥𝑖
𝑑Ω +  𝝓𝑘𝑯

𝜕Ω

𝑲𝑖𝑗

𝜕𝒒𝑀′

𝜕𝑥𝑖
𝑛𝑗𝑑𝑆

Ω

 

 

• Substitute modal decomposition 𝒒𝑀
′ (𝒙, 𝑡) =  𝑎𝑀,𝑖(𝑡)𝝓𝒊(𝒙)

𝑀
𝑖=1 to obtain an 𝑀 ×𝑀 linear 

dynamical system of the form 𝒙 𝑀 = 𝑨𝒙𝑀. 



Continuous projection implementation:  
“Spirit” code 

• POD modes defined using piecewise smooth finite elements. 
 

• Gauss quadrature rules of sufficient accuracy are used to compute exactly 
inner products with the help of the libmesh library.  

 

• Physics in Spirit:  
 

• Linearized compressible Euler (𝐿2, energy inner product). 
 

• Linearized compressible Navier-Stokes (𝐿2, energy inner product).  
 
 

• Nonlinear isentropic compressible Navier-Stokes (𝐿2, stagnation 
energy, stagnation enthalpy inner product). 

 

• Nonlinear compressible Navier-Stokes (𝐿2, energy inner product). 

“Spirit” ROM Code = 3D parallel C++ POD/Galerkin test-bed ROM code that uses data-structures 
and eigensolvers from Trilinos to build energy-stable ROMs for compressible flow problems 

→ stand-alone code that can be synchronized with any high-fidelity code! 

“SIGMA CFD” High-Fidelity Code = Sandia in-house finite volume flow solver derived from 
LESLIE3D (Genin & Menon, 2010), an LES flow solver originally developed in the Computational 

Combustion Laboratory at Georgia Tech.  



Continuous projection implementation:  
“Spirit” code 

• POD modes defined using piecewise smooth finite elements. 
 

• Gauss quadrature rules of sufficient accuracy are used to compute exactly 
inner products with the help of the libmesh library.  

 

• Physics in Spirit:  
 

• Linearized compressible Euler (𝐿2, energy inner product). 
 

• Linearized compressible Navier-Stokes (𝐿2, energy inner product).  
 
 

• Nonlinear isentropic compressible Navier-Stokes (𝐿2, stagnation 
energy, stagnation enthalpy inner product). 

 

• Nonlinear compressible Navier-Stokes (𝐿2, energy inner product). 

“Spirit” ROM Code = 3D parallel C++ POD/Galerkin test-bed ROM code that uses data-structures 
and eigensolvers from Trilinos to build energy-stable ROMs for compressible flow problems 

→ stand-alone code that can be synchronized with any high-fidelity code! 

“SIGMA CFD” High-Fidelity Code = Sandia in-house finite volume flow solver derived from 
LESLIE3D (Genin & Menon, 2010), an LES flow solver originally developed in the Computational 

Combustion Laboratory at Georgia Tech.  

First, testing 
of ROMs for 

these 
physics 



Numerical results: random basis example 

• Uniform base flow: physically stable to any linear disturbance. 
 
 

• Each mode is random disturbance field that decays to 0 at domain boundaries. 
 
 

• Model problem for modes determined by numerical error: extreme case of “bad” 
modes. 



Numerical results: 2D inviscid pressure pulse 

• Inviscid pulse in a uniform base flow. 
 

• High-fidelity simulation run on mesh with 3362 nodes, up to time 𝑡 =  0.01 seconds. 
 

• 200 snapshots of solution used to construct 𝑀 = 20 mode ROM in 𝐿2 and symmetry 
inner products. 

𝑎𝑀,𝑖(𝑡) vs.(𝒒’𝐶𝐹𝐷, 𝝓𝑖) for 𝑖 = 1,2 

𝑳𝟐 ROM Symmetry ROM 

° 𝑎𝑀,1   
− (𝒒’𝐶𝐹𝐷, 𝝓1)  
° 𝑎𝑀,2   
− (𝒒’𝐶𝐹𝐷, 𝝓2) 

𝑎
𝑀
,𝑖
 

𝑎
𝑀
,𝑖
 

𝑡 𝑡 



• Inviscid pulse in a uniform base flow (linear dynamics). 
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Continuous Projection Discrete Projection 

Change projection 
(a priori) 

Energy inner products (Rowley et 
al., Serre et al., IKT et al.) 

Energy inner products (Rowley, et al.), 
Petrov-Galerkin Projection (Carlberg et 

al.)  

Change ROM equations 
(a posteriori) 

Linear/nonlinear turbulence 
modeling (Iliescu, Borggaard, Xie, 

Wang, …) 

Eigenvalue reassignment (IKT et al.) 
 

Change ROM basis 
(a posteriori) 

Basis rotation (Balajewicz, IKT, et al.) Optimization-based right basis 
modificatiOon (Amsallem) 



Nonlinear compressible flow equations 

• Compressible isentropic Navier-Stokes equations (cold flows, moderate Mach #): 
 
 

 
𝐷ℎ

𝐷𝑡
+ 𝛾 − 1 ℎ𝛻 ∙ 𝒖 = 0 

𝐷𝒖

𝐷𝑡
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𝜌
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𝛾
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𝛾 𝛾 − 1 𝑀2
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𝛻𝒖 ∙ 𝝉 = 0 

• Full compressible Navier-Stokes equations: 
 

ℎ = enthalpy 
𝒖 = velocity vector 
𝜌 = density 
𝑇 = temperature 
 𝝉 = viscous stress tensor 

Energy-Stability for Nonlinear PDEs:  
ROM built in energy inner product will preserve stability of an equilibrium point at 0 for 

the governing nonlinear system of PDEs (Rowley et al., 2004; IKT et al., 2014). 



Energy-stable ROMs for nonlinear compressible  
flow: isentropic NS (Rowley et al., 2004) 

In (Rowley et al., 2004), Rowley et al. showed that energy inner product for 
the compressible isentropic Navier-Stokes equations can be defined 

following a transformation of these equations.  
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If Galerkin projection step of 
model reduction is performed in 𝛼 
inner product, then the Galerkin 

projection will preserve the 
stability of an equilibrium point at 

the origin (Rowley et al., 2004). 
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In (Rowley et al., 2004), Rowley et al. showed that energy inner product for 
the compressible isentropic Navier-Stokes equations can be defined 

following a transformation of these equations.  



Energy-stable ROMs for nonlinear compressible 
flow: full NS 

Our work extends ideas in (Rowley et al., 2004) to full compressible N-S equations. 
Requirement: transformation/inner product yields PDEs with only polynomial non-linearities.   
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total energy inner product, then 
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→ Norm induced by total energy inner product is the 
total energy of the fluid system: 

 Transformed equations have only 
polynomial non-linearities (projection of 
which can be computed in offline stage of 
MOR and stored).  
 

   Transformation introduces higher order 
polynomial non-linearities for viscous case. 
   

 Efficiency of online stage of MOR 
can be recovered using hyper-
reduction (e.g., DEIM, gappy POD). 
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Continuous projection  
Implementation: “Spirit” Code 

• POD modes defined using piecewise smooth finite elements. 
 

• Gauss quadrature rules of sufficient accuracy are used to compute exactly 
inner products with the help of the libmesh library.  

 

• Physics in spirit:  
 

• Linearized compressible Euler (𝐿2, energy inner product). 
 

• Linearized compressible Navier-Stokes (𝐿2, energy inner product).  
 
 

• Nonlinear isentropic compressible Navier-Stokes (𝐿2, stagnation 
energy, stagnation enthalpy inner product). 

 

• Nonlinear compressible Navier-Stokes (𝐿2, energy inner product). 

“Spirit” ROM Code = 3D parallel C++ POD/Galerkin test-bed ROM code that uses data-structures 
and eigensolvers from Trilinos to build energy-stable ROMs for compressible flow problems 

→ stand-alone code that can be synchronized with any high-fidelity code! 

“SIGMA CFD” High-Fidelity Code = Sandia in-house finite volume flow solver derived from 
LESLIE3D (Genin & Menon, 2010), a  LES flow solver originally developed in the Computational 

Combustion Laboratory at Georgia Tech.  

Now, testing 
of ROMs for  

these 
physics 



Numerical results: viscous laminar cavity 

• Viscous cavity problem at 𝑀 =  0.6, 
𝑅𝑒 =  1500 (laminar regime).  
 

• High-fidelity simulation: DNS based on full 
nonlinear compressible Navier-Stokes 
equations with 99,408 nodes (right). 
 

• 500 snapshots collected, every ∆𝑡𝑠𝑛𝑎𝑝 =
 1 × 10−4 seconds. 
 

• Snapshots used to construct 𝑀 = 5 mode 
ROM for nonlinear compressible Navier-
Stokes equations in 𝑳𝟐 and total energy 
inner products.  
 

• 𝑀 = 5 mode POD bases capture ≈  95% of 
snapshot energy.   
 

Figure above: viscous laminar 
cavity problem domain/mesh. 



Numerical results: viscous laminar cavity 

High-Fidelity 

5 mode total energy ROM 

ROM (𝑀 = 5 modes) Error (𝐿2 norm) 

Nonlinear 𝐿2 ROM 𝑁𝑎𝑁 

Total Energy ROM 5.52 × 10−2 

• L2 ROM blows up; 
energy ROM 
remains stable. 

• Future work: 
improving efficiency of 
total energy ROMs 
through incorporation 
of hyper-reduction 
(e.g., DEIM, gappy 
POD). 

Figure above: 𝑢-component of  
velocity as a function of time 𝑡 
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Continuous Projection Discrete Projection 

Change projection 
(a priori) 

Energy inner products (Rowley et 
al., Serre et al., IKT et al.) 

Energy inner products (Rowley, et al.), 
Petrov-Galerkin Projection (Carlberg et 

al.)  

Change ROM equations 
(a posteriori) 

Linear/nonlinear turbulence 
modeling (Iliescu, Borggaard, Xie, 

Wang, …) 

Eigenvalue reassignment (IKT et al.) 
 

Change ROM basis 
(a posteriori) 

Basis rotation (Balajewicz, IKT, et al.) Optimization-based right basis 
modificatiOon (Amsallem) 



Stable ROMs for Linear Time-Invariant (LTI) systems 

Attention restricted to Linear Time Invariant (LTI) systems 
 
 

𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝒖(𝑡) 
  𝒚 𝑡 = 𝑪𝒙 𝑡    

 

     as a first step towards the more general nonlinear case. 
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𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝒖 𝑡  
            𝒚 𝑡 = 𝑪𝒙 𝑡   

LTI Reduced Order Model (ROM) 
 

𝒙 𝑀 𝑡 = 𝑨𝑀𝒙𝑀 𝑡 + 𝑩𝑀𝒖 𝑡  
          𝒚𝑀 𝑡 = 𝑪𝑀𝒙𝑀 𝑡    

𝑨𝑀 = 𝚽𝑇𝑨𝚽 

𝑩𝑀 = 𝚽𝑇𝑩 

𝑪𝑀 = 𝑪𝚽 



Stable ROMs for Linear Time-Invariant (LTI) systems 

Attention restricted to Linear Time Invariant (LTI) systems 
 
 

𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝒖(𝑡) 
  𝒚 𝑡 = 𝑪𝒙 𝑡    

 

     as a first step towards the more general nonlinear case. 

LTI Full Order Model (FOM) 
 

𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝒖 𝑡  
            𝒚 𝑡 = 𝑪𝒙 𝑡   

LTI Reduced Order Model (ROM) 
 

𝒙 𝑀 𝑡 = 𝑨𝑀𝒙𝑀 𝑡 + 𝑩𝑀𝒖 𝑡  
          𝒚𝑀 𝑡 = 𝑪𝑀𝒙𝑀 𝑡    

Problem: 𝑨 stable ⇏  𝑨𝑀 stable! 𝑨𝑀 = 𝚽𝑇𝑨𝚽 

𝑩𝑀 = 𝚽𝑇𝑩 

𝑪𝑀 = 𝑪𝚽 



Stable ROMs for Linear Time-Invariant (LTI) systems 

Attention restricted to Linear Time Invariant (LTI) systems 
 
 

𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝒖(𝑡) 
  𝒚 𝑡 = 𝑪𝒙 𝑡    
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𝒙 𝑡 = 𝑨𝒙 𝑡 + 𝑩𝒖 𝑡  
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Unstable ROM 
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Stabilization 
Algorithm 
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Stable and Accurate ROM 
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𝑨𝑀 = 𝚽𝑇𝑨𝚽 

𝑩𝑀 = 𝚽𝑇𝑩 
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ROM stabilization via optimization-based  
eigenvalue reassignment  (IKT et al., 2014) 

ROM Stabilization Optimization Problem  
(Constrained Nonlinear Least Squares):  
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𝜆𝑖
𝑢
 ||𝒚𝑘 − 𝒚𝑀

𝑘||2
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𝐾

𝑘=1

 

                           𝑠. 𝑡.  𝑅𝑒 𝜆𝑖
𝑢 < 0 

• 𝜆𝑖
𝑢 = unstable eigenvalues of original ROM matrix 𝑨𝑀.   

 

• 𝒚𝑘 = 𝒚(𝑡𝑘) = snapshot output at 𝑡𝑘. 
 

• 𝒚𝑀
𝑘 = 𝑪𝑀 exp 𝑡𝑘𝑨𝑀 𝒙𝑀 0 +  exp{ 𝑡𝑘 − 𝜏 𝑨𝑀}𝑩𝑀𝑢 𝜏 𝑑𝜏

𝑡
𝑘

0
 = ROM output at 𝑡𝑘. 

 

 

(1) 

Replace unstable 
𝑨𝑀 with stable 𝑨 𝑀. 

Idea: modify ROM system s.t. 
𝑨𝑀 is stable and discrepancy 
b/w ROM output 𝒚𝑀 𝑡  and 
FOM output 𝒚 𝑡  is minimal. 
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• ROM stabilization optimization problem is small: < 𝑂(𝑀). 
 

(1) 

Replace unstable 
𝑨𝑀 with stable 𝑨 𝑀. 

Idea: modify ROM system s.t. 
𝑨𝑀 is stable and discrepancy 
b/w ROM output 𝒚𝑀 𝑡  and 
FOM output 𝒚 𝑡  is minimal. 



ROM stabilization via optimization-based  
eigenvalue reassignment  (IKT et al., 2014) 

ROM Stabilization Optimization Problem  
(Constrained Nonlinear Least Squares):  

 

𝑚𝑖𝑛
𝜆𝑖
𝑢
 ||𝒚𝑘 − 𝒚𝑀

𝑘||2
2

𝐾

𝑘=1

 

                           𝑠. 𝑡.  𝑅𝑒 𝜆𝑖
𝑢 < 0 

• 𝜆𝑖
𝑢 = unstable eigenvalues of original ROM matrix 𝑨𝑀.   

 

• 𝒚𝑘 = 𝒚(𝑡𝑘) = snapshot output at 𝑡𝑘. 
 

• 𝒚𝑀
𝑘 = 𝑪𝑀 exp 𝑡𝑘𝑨𝑀 𝒙𝑀 0 +  exp{ 𝑡𝑘 − 𝜏 𝑨𝑀}𝑩𝑀𝑢 𝜏 𝑑𝜏

𝑡
𝑘

0
 = ROM output at 𝑡𝑘. 

 

• ROM stabilization optimization problem is small: < 𝑂(𝑀). 
 

• ROM stabilization optimization problem can be solved by standard optimization algorithms, 
e.g., interior point method. 

 

• We use fmincon function in MATLAB’s optimization toolbox. 
 

• We implement ROM stabilization optimization problem in characteristic variables 
𝒛𝑀(𝑡) = 𝑺𝑀

−1𝒙𝑀(𝑡) where 𝑨𝑀 = 𝑺𝑀𝑫𝑀𝑺𝑀
−1. 

 

(1) 

Replace unstable 
𝑨𝑀 with stable 𝑨 𝑀. 

Idea: modify ROM system s.t. 
𝑨𝑀 is stable and discrepancy 
b/w ROM output 𝒚𝑀 𝑡  and 
FOM output 𝒚 𝑡  is minimal. 



Algorithm 
 

• Diagonalize the ROM matrix 𝑨𝑀: 𝑨𝑀 = 𝑺𝑀𝑫𝑀𝑺𝑀
−1. 

• Initialize a diagonal 𝑀 ×𝑀 matrix 𝑫 𝑀.  Set  𝑗 = 1. 
• for 𝑖 = 1 to 𝑀 

• if 𝑅𝑒(𝐷𝑀 (𝑖, 𝑖) < 0), set 𝐷 𝑀(𝑖, 𝑖) = 𝐷𝑀(𝑖, 𝑖). 
• else, set 𝐷 𝑀(𝑖, 𝑖) = 𝜆𝑗

𝑢. 
•  Increment 𝑗 ← 𝑗 + 1. 
• Solve the optimization problem (1) for the eigenvalues {𝜆𝑗

𝑢} using an 
optimization algorithm (e.g., interior point method). 

• Evaluate 𝑫 𝑀 at the solution of the optimization problem (1). 
• Return the stabilized ROM system, given by 𝑨𝑀 ← 𝑨 𝑀 = 𝑺𝑀𝑫 𝑀𝑺𝑀

−1. 

ROM stabilization via optimization-based  
eigenvalue reassignment 



Algorithm 
 

• Diagonalize the ROM matrix 𝑨𝑀: 𝑨𝑀 = 𝑺𝑀𝑫𝑀𝑺𝑀
−1. 

• Initialize a diagonal 𝑀 ×𝑀 matrix 𝑫 𝑀.  Set  𝑗 = 1. 
• for 𝑖 = 1 to 𝑀 

• if 𝑅𝑒(𝐷𝑀 (𝑖, 𝑖) < 0), set 𝐷 𝑀(𝑖, 𝑖) = 𝐷𝑀(𝑖, 𝑖). 
• else, set 𝐷 𝑀(𝑖, 𝑖) = 𝜆𝑗

𝑢. 
•  Increment 𝑗 ← 𝑗 + 1. 
• Solve the optimization problem (1) for the eigenvalues {𝜆𝑗

𝑢} using an 
optimization algorithm (e.g., interior point method). 

• Evaluate 𝑫 𝑀 at the solution of the optimization problem (1). 
• Return the stabilized ROM system, given by 𝑨𝑀 ← 𝑨 𝑀 = 𝑺𝑀𝑫 𝑀𝑺𝑀

−1. 

• Solution to optimization problem (1) may not be unique. 
 

• Can solve (1) for real or complex-conjugate pair eigenvalues:  
•  𝜆𝑗

𝑢 ∈ ℝ s.t. constraint 𝜆𝑗
𝑢 < 0. 

• 𝜆𝑗
𝑢= 𝜆𝑗

𝑢𝑟 + 𝑖 𝜆𝑗
𝑢𝑐, 𝜆𝑗+1

𝑢= 𝜆𝑗
𝑢𝑟 − 𝑖 𝜆𝑗

𝑢𝑐 ∈ ℂ where 𝜆𝑗
𝑢𝑟, 𝜆𝑗

𝑢𝑐 ∈ ℝ  

s.t. constraint 𝜆𝑗
𝑢𝑟 < 0. 

 
 

ROM stabilization via optimization-based  
eigenvalue reassignment 



Numerical results: electrostatically actuated 
beam benchmark 

• FOM = 1D model of electrostatically actuated beam. 
 

• Application of model: microelectromechanical 
systems (MEMS) devices such as electromechanical 
radio frequency (RF) filters. 

 

• 1 input corresponding to periodic on/off switching, 1 
output, initial condition 𝒙(0) = 𝟎𝑁. 

 

• Second order linear semi-discrete system of the 
form:  

 

𝑴𝒙 𝑡 + 𝑬𝒙 𝑡 + 𝑲𝒙 𝑡 = 𝑩𝒖 𝑡  
                                              𝒚 𝑡 = 𝑪𝒙 𝑡  
 

• Matrices 𝑴, 𝑬, 𝑲, 𝑩, 𝑪 specifying the problem 
downloaded from the Oberwolfach ROM      
repository*.  

 

• 2nd order linear system re-written as 1st order LTI 
system for purpose of analysis/model reduction. 

 
• FOM is stable. 

* Oberwolfach ROM benchmark repository: http://simulation.uni-freiburg.de/downloads/benchmark. 

http://simulation.uni-freiburg.de/downloads/benchmark
http://simulation.uni-freiburg.de/downloads/benchmark
http://simulation.uni-freiburg.de/downloads/benchmark


• 𝑀 = 17 POD/Galerkin ROM constructed from 𝐾 = 1000  snapshots up to time 𝑡 = 0.05.   
 

• 𝑀 = 17 POD/Galerkin ROM has 4 unstable eigenvalues (all real). 
 

• Two options for ROM stabilization optimization problem:  
 

Option 1: Solve for 𝜆1, 𝜆2, 𝜆3, 𝜆4 ∈ ℝ s.t. the constraint 𝜆1, 𝜆2, 𝜆3, 𝜆4 < 0. 
 

Option 2: Solve for 𝜆1+ 𝜆2𝑖, 𝜆1− 𝜆2𝑖, 𝜆3 + 𝜆4𝑖, 𝜆3 −𝜆4𝑖 ∈ ℂ  s.t. the constraint  
𝜆1, 𝜆3 < 0. 
 

• Initial guess for fmincon interior point method: 𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = −1. 
 

 
 

ROM 

 | 𝒚𝑘 − 𝒚𝑀
𝑘 |2

𝐾
𝑘=1

2

 | 𝒚𝑘 |2
𝐾
𝑘=1

2

 

Unstabilized POD 𝑁𝑎𝑁 

Optimization Stabilized POD 
(Real Poles) 

0.0194 

Optimization Stabilized POD 
(Complex-Conjugate Poles) 

0.0205 

Balanced Truncation 1.370𝑒 − 6 

Numerical results: electrostatically actuated  
beam benchmark  
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• One can show that 𝑨 𝑀 from the algorithm on the previous slide is given by: 
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Next section of talk (basis rotation): method for 
modifying a posteriori an unstable ROM that maintains 
consistency (and is applicable to nonlinear problems).  



Outline 

1. Motivation. 
 
 
 

2. Projection-based model order reduction. 
 
 

3.   Targeted application: compressible cavity flow. 
 
 
 

4.   Approaches for building a priori stable ROMs. 
(a) Energy-stable linearized compressible flow ROMs. 
(b) Energy-stable nonlinear compressible flow ROMs. 
 
 

5.   Approaches for stabilizing a posteriori unstable ROMs. 
(a) Eigenvalue reassignment (Linear Time-Invariant systems). 
(b) Basis rotation (nonlinear compressible flow). 
 
 

6. Summary/perspectives. 
 
 

7.   Ongoing/future work. 
with: Maciej Balajewicz (UIUC),  

Earl Dowell (Duke) 

Continuous Projection Discrete Projection 

Change projection 
(a priori) 

Energy inner products (Rowley et 
al., Serre et al., IKT et al.) 

Energy inner products (Rowley, et al.), 
Petrov-Galerkin Projection (Carlberg et 

al.)  

Change ROM equations 
(a posteriori) 

Linear/nonlinear turbulence 
modeling (Iliescu, Borggaard, Xie, 

Wang, …) 

Eigenvalue reassignment (IKT et al.) 
 

Change ROM basis 
(a posteriori) 

Basis rotation (Balajewicz, IKT, et 
al.) 

Optimization-based right basis 
modificatiOon (Amsallem) 



Extreme model reduction 
• Most realistic applications (e.g., high Re compressible cavity): basis that captures 
>99% snapshot energy is required to accurately reproduce snapshots. 
 

→ leads to 𝑀 > 𝑂(1000) except for toy problems and/or low-fidelity models. 
 

We are looking for an approach that enables extreme model reduction:  
ROM basis size is 𝑂(10) or 𝑂(100). 

• Higher order modes are in general 
unreliable for prediction, so 
including them in the basis is unlikely 
to improve the predictive capabilities 
of a ROM.  

Figure (right) shows projection error 
for POD basis constructed using 800 

snapshots for cavity problem.   
Dashed line = end of snapshot 

collection period. 



Mode truncation instability 

Projection-based MOR necessitates truncation. 
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Mode truncation instability 

 
  

• POD is, by definition and design, biased towards the large, energy producing 
scales of the flow (i.e., modes with large POD eigenvalues). 

 

• Truncated/unresolved modes are negligible from a data compression point of 
view (i.e., small POD eigenvalues) but are crucial for the dynamical 
equations. 

 

• For fluid flow applications, higher-order modes are associated with energy 
dissipation 

 

For a low-dimensional ROM to be stable and accurate, the 
truncated/unresolved subspace must be accounted for. 

Turbulence Modeling 
(traditional approach) 

Subspace Rotation 
(our approach) 

Projection-based MOR necessitates truncation. 

⟹ low-dimensional ROMs can be inaccurate and unstable. 



Governing equations and ROM 
 

• 3D compressible Navier-Stokes equations in primitive specific volume form: 

𝜁,𝑡 + 𝜁,𝑗𝑢𝑗 − 𝜁𝑢𝑗,𝑗 = 0 

𝑢𝑖,𝑡 + 𝑢𝑖,𝑗𝑢𝑗 + 𝜁𝑝,𝑖 −
1

𝑅𝑒
𝜁𝜏𝑖𝑗,𝑗 = 0 

𝑝,𝑡 + 𝑢𝑗𝑝,𝑗 + 𝛾𝑢𝑗,𝑗𝑝 −
𝛾

𝑃𝑟𝑅𝑒
𝜅 𝑝𝜁 ,𝑗 ,𝑗

−
𝛾 − 1

𝑅𝑒
𝑢𝑖,𝑗𝜏𝑖𝑗 = 0 

[PDEs] (2) 



Governing equations and ROM 
 

• 3D compressible Navier-Stokes equations in primitive specific volume form: 

(2) 

𝜁,𝑡 + 𝜁,𝑗𝑢𝑗 − 𝜁𝑢𝑗,𝑗 = 0 

𝑢𝑖,𝑡 + 𝑢𝑖,𝑗𝑢𝑗 + 𝜁𝑝,𝑖 −
1

𝑅𝑒
𝜁𝜏𝑖𝑗,𝑗 = 0 

𝑝,𝑡 + 𝑢𝑗𝑝,𝑗 + 𝛾𝑢𝑗,𝑗𝑝 −
𝛾

𝑃𝑟𝑅𝑒
𝜅 𝑝𝜁 ,𝑗 ,𝑗

−
𝛾 − 1

𝑅𝑒
𝑢𝑖,𝑗𝜏𝑖𝑗 = 0 

• POD discretization 𝒒(𝒙, 𝑡) ≈  𝑎𝑖 𝑡 𝝓𝑖(𝒙)
𝑀
𝑖=1 + Galerkin projection 

applied to (2) yields a system of 𝑀 coupled quadratic ODEs: 
 

𝑑𝒂

𝑑𝑡
= 𝑪 + 𝑳𝒂 + 𝒂𝑇𝑸(1)𝒂 + 𝒂𝑇𝑸(2)𝒂 +⋯+ 𝒂𝑇𝑸(𝑀)𝒂 𝑇 (3) [ROM] 

[PDEs] 

where 𝑪 ∈ ℝ𝑀, 𝑳 ∈ ℝ𝑀×𝑀 and  𝑸(𝑖) ∈ ℝ𝑀×𝑀 for all 𝑖 = 1, … ,𝑀. 
 



 
• Dissipative dynamics of truncated higher-order modes are modeled using 

an additional linear term: 

𝑑𝒂

𝑑𝑡
= 𝑪 + 𝑳𝒂 + 𝒂𝑇𝑸 1 𝒂 + 𝒂𝑇𝑸 2 𝒂 +⋯+ 𝒂𝑇𝑸 𝑀 𝒂 𝑇 
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• Dissipative dynamics of truncated higher-order modes are modeled using 

an additional linear term: 

𝑑𝒂

𝑑𝑡
= 𝑪 + 𝑳 + 𝑳𝜈 𝒂 + 𝒂𝑇𝑸 1 𝒂 + 𝒂𝑇𝑸 2 𝒂 +⋯+ 𝒂𝑇𝑸 𝑀 𝒂 𝑇 

• 𝑳𝜈 is designed to decrease magnitude of positive eigenvalues and increase 
magnitude of negative eigenvalues of 𝑳 + 𝑳𝜈 (for stability). 
 

• Disadvantages of this approach: 
 

1. Additional term destroys consistency between ROM and Navier-
Stokes equations. 

2. Calibration is necessary to derive optimal 𝑳𝜈 and optimal value is flow 
dependent. 

3. Inherently a linear model → cannot be expected to perform well for 
all classes of problems (e.g., nonlinear). 

Traditional linear eddy-viscosity approach  
to account for modal truncation 
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Proposed new approach for modal 
truncation: basis rotation 

(4) 

Instead of modeling truncation via additional linear term, model the truncation 
a priori by “rotating” the projection subspace into a more dissipative regime 

Illustrative example 
• Standard approach: retain only the most energetic POD modes, i.e., 𝝓1, 𝝓2, 

𝝓3, 𝝓4, … 
• Proposed approach: choose some higher order basis modes to increase 

dissipation, i.e., 𝝓1, 𝝓2, 𝝓6, 𝝓8, … 

• More generally: approximate the solution using a linear superposition 
of 𝑀+ 𝑃 (with 𝑃 > 0) most energetic modes:  
 

𝝓 𝑖 =  𝑋𝑖𝑗
𝑀+𝑃
𝑗=1 𝝓𝑗,   𝑖 = 1,… ,𝑀, 

 where 𝝓 ∈ ℝ 𝑀+𝑃 ×𝑀 is an orthonormal (𝑿𝑇𝑿 = 𝑰𝑀×𝑀) “rotation” 
matrix. 



Goals of proposed new approach to 
account for modal truncation 

 

Find 𝑿 such that: 
 
 

1. New modes 𝝓  remain good approximations of the flow  
 

         → minimize the “rotation” angle, i.e., minimize 𝑿 − 𝑰 𝑀+𝑃 ,𝑀 𝐹 
 

 

2. New modes produce stable and accurate ROMs. 
 

 → ensure appropriate balance between energy production and 
energy dissipation. 
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Goals of proposed new approach to 
account for modal truncation 

 

Find 𝑿 such that: 
 
 

1. New modes 𝝓  remain good approximations of the flow  
 

         → minimize the “rotation” angle, i.e., minimize 𝑿 − 𝑰 𝑀+𝑃 ,𝑀 𝐹 
 

 

2. New modes produce stable and accurate ROMs. 
 

 → ensure appropriate balance between energy production and 
energy dissipation. 
 

• Once 𝑿 is found, the result is a system of the form (3) with:  
 

𝑄(𝑖)
𝑗𝑘 ←  𝑋𝑠𝑖𝑄

(𝑠)
𝑞𝑟

𝑀+𝑃
𝑠,𝑞,𝑟=1 𝑋𝑞𝑟𝑋𝑟𝑘 ,   𝑳 ← 𝑿𝑇𝑳𝑿,     𝑪 ← 𝑿𝑇𝑪∗ 



Minimal subspace rotation 

• Trace minimization problem on the Stiefel manifold: 

 

• 𝒱 𝑀+𝑃 ,𝑀 ∈ 𝑿 ∈ ℝ 𝑀+𝑃 ×𝑀: 𝑿𝑇𝑿 = 𝑰𝑀, 𝑃 > 0  is the Stiefel manifold. 
 

• Constraint is traditional linear eddy-viscosity closure model ansatz → involves 
overall balance between linear energy production and dissipation / vanishing 
of averaged total power (= tr(𝑿𝑇𝑳𝑿) + energy transfer).  

 

• 𝜂 ∈ ℝ: proxy for the balance between linear energy production and 
energy dissipation (calculated iteratively using modal energy). 

 

• Equation (5) is solved efficiently offline using the method of Lagrange 
multipliers (Manopt MATLAB toolbox). 

 

• See (Balajewicz, IKT, Dowell, 2016) and Appendix slide for Algorithm. 
 
 

(5) 
minimize𝑿∈𝒱 𝑀+𝑃 ,𝑀

  − tr 𝑿𝑇𝑰 𝑀+𝑃 ×𝑀  

subject to       tr 𝑿𝑇𝑳𝑿 = 𝜂 
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Accounting for modal truncation: remarks 

Proposed approach may be interpreted as an a priori consistent 
formulation of the eddy-viscosity turbulence modeling approach. 

• Advantages of proposed approach:  
 

1. Retains consistency between ROM and Navier-Stokes equations → 
no additional turbulence terms required. 

2. Inherently a nonlinear model → should be expected to outperform 
linear models. 

3. Works with any basis and Petrov-Galerkin projection. 
 
 
 

• Disadvantages of proposed approach: 
 

1. Off-line calibration of free parameter 𝜂 is required. 
2. Stability cannot be proven like for incompressible case. 



Numerical results: low Re number cavity 

Flow over square cavity at Mach 0.6, Re = 1453.9, Pr = 0.72 
⇒ 𝑀 = 4 ROM (91% snapshot energy). 

• Above: domain and mesh for viscous channel driven cavity problem. 



• Figure (a) shows evolution of modal energy.  Standard ROM is unstable. 
 
 

• Figure (b) shows phase plot of first and second temporal basis 𝑎1(𝑡) and 𝑎2 𝑡 . Stabilized 
ROM computes stable limit cycle; standard ROM computes unstable spiral. 

 
 

• Figure (c) is an illustration of the stabilizing rotation matrix.  Rotation is small: 
𝑿−𝑰 𝑀+𝑃 ,𝑀 𝐹

𝑀
= 0.188, 𝑿 ≈ 𝑰 𝑀+𝑃 ,𝑀 

-- standard 
ROM (M=4) 
− stabilized 
ROM (M=P=4) 
− DNS 

Numerical results: low Re number cavity 



• Pressure power spectral density (PSD) at location 𝒙 = 2,−1 . 

-- standard 
ROM (M=4) 
− stabilized 
ROM (M=P=4) 
− DNS 

Numerical results: low Re number cavity 



Numerical results: moderate Re number 
cavity 

• Above: domain and mesh for viscous channel driven cavity problem. 

Flow over square cavity at Mach 0.6, Re = 5452.1, Pr = 0.72 
⇒ 𝑀 = 20 ROM (71.8% snapshot energy). 



• Figure (a) shows evolution of modal energy.  Stabilized ROM energy closer to FOM. 
 
 

• Figure (b) illustrates stabilizing rotation matrix.  Rotation is small:
𝑿−𝑰 𝑀+𝑃 ,𝑀 𝐹

𝑀
=

0.038, 𝑿 ≈ 𝑰 𝑀+𝑃 ,𝑀 

-- standard 
ROM (M=20) 
− stabilized 
ROM (M=P=20) 
− DNS 

Numerical results: moderate Re number 
cavity 



Power and phase lag at fundamental frequency, and first two super harmonics are 
predicted accurately using the fine-tuned ROM (∆ = stabilized ROM,  = DNS) 

• Figures show pressure cross PSD of of 𝑝(𝒙1, 𝑡) and 𝑝(𝒙2, 𝑡) where 𝒙1 = 2,−0.5 , 
𝒙2 = 0,−0.5 .  Left: power; right: phase lag. 

− stabilized ROM (M=P=20) 
− DNS 

Numerical results: moderate Re number 
cavity 



Future work (basis rotation) 

• Application to higher Reynolds number problems. 
 

• Extension of the proposed approach to problems with generic nonlinearities, 
where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD). 

 

• Extension of the method to minimal-residual-based nonlinear ROMs. 
 

• Extension of the method to predictive applications, e.g., problems with varying 
Reynolds number and/or Mach number. 

 

• Selecting different goal-oriented objectives and constraints in our optimization 
problem:  
 
 
 

minimize𝑿∈𝒱 𝑀+𝑃 ,𝑀
  𝑓(𝑿) 

subject to     𝑔(𝑿, 𝑳) = 0 

e.g.,  
• Maximize parametric robustness:                                            

𝑓 =  𝛽𝑖 𝑼∗ 𝜇𝑖 𝑿 − 𝑼∗ 𝜇𝑖
𝑘
𝑖=1 𝐹. 

 

• ODE constraints: 𝑔 =  𝒂 𝑡 − 𝒂∗(𝑡) .       
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Summary/perspectives 

• Energy inner product + continuous projection 
• Pros: consistent, inner product known analytically in closed form. 
• Cons: inner product is problem specific, expensive for nonlinear problems, BC 

implementation important for stability. 
 

• Eigenvalue reassignment  
• Pros: black-box, easy-to-solve offline optimization problem 
• Cons: inconsistent, work required to extend to nonlinear and predictive problems. 
 

• Basis rotation 
• Pros: black-box, consistent, works with any basis, applicable to nonlinear flow problems. 
• Cons: work required to extend to generic nonlinear PDEs. 

 

Continuous Projection Discrete Projection 

Change projection 
(a priori) 

Energy inner products (Rowley et 
al., Serre et al., IKT et al.) 

Energy inner products (Rowley, et al.), Petrov-
Galerkin Projection (Carlberg et al.)  

Change ROM 
equations 

(a posteriori) 

Linear/nonlinear turbulence 
modeling (Iliescu, Borggaard, Xie, 

Wang, …) 

Eigenvalue reassignment (IKT et al.) 

Change ROM basis 
(a posteriori) 

Basis rotation (Balajewicz, IKT, et 
al.) 

Optimization-based right basis modification 
(Amsallem et al.) 
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 More info: www.sandia.gov/~ikalash 
Thank you! 

* https://github.com/gahansen/Albany. 

http://www.sandia.gov/~ikalash
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Appendix: Connection to Lyapunov stability 

𝒙 𝑁 = 𝒇𝑁 𝒙𝑁 ,   𝒙𝑁∈ ℝ𝑁 

• Lyapunov stability: if there exists a Lyapunov function 𝑉 such that 
 

• 𝑉 > 0 (positive definite), and  

•
𝑑𝑉

𝑑𝑡
=

𝑑𝑉

𝑑𝒙
𝒇(𝒙) ≤ 0  

 

     in 𝐵𝑟(𝒙𝑠), then 𝒙𝑠 is locally stable in the sense of Lyapunov. 
 
• Energy stability: Let                                 denote the system energy.  If  𝐸𝑁 ≡

1

2
||𝒙𝑁||2 

𝑑𝐸𝑁
𝑑𝑡

≤ 0 

is energy-stable. 

Remark: the system energy 𝐸𝑁 satisfies the definition of a Lyapunov function! 



Appendix: Symmetry (continuous) vs. Lyapunov  
(discrete) inner product 

Symmetry Inner Product  
(Continuous) 

Lyapunov Inner Product  
(Discrete) 

𝒒1, 𝒒2 𝑯 ≡  𝒒1𝑯𝒒2𝑑Ω
Ω

 𝒙1, 𝒙2 𝑷 ≡ 𝒙1
𝑇𝑷𝒙2 

• For linear systems:  

𝒒′ + 𝑨𝑖 𝒒 
𝜕𝒒′

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
𝑲𝑖𝑗(𝒒 )

𝜕𝒒′

𝜕𝑥𝑖
= 𝟎 

 
• Defined for unstable systems, but 

stability of ROM not guaranteed.  
 

• Induced by Lyapunov function for 
system. 

 

• Equation-specific (⟹ embedded 
algorithm). 

 

• Known analytically in closed form. 

• For linear systems:  

𝒙 = 𝑨𝒙 

• Undefined for unstable systems. 
 
 

• Induced by Lyapunov function for 
system. 

 

• Black-box. 
 
 

• Computed numerically by solving 
Lyapunov equation (𝑂(𝑁3) ops). 
 

Intractable for 
large problems! 



Appendix: Accounting for modal truncation 
Stabilization algorithm: returns stabilizing rotation matrix 𝑿. 
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• 𝑢-velocity at time of final snapshot for low Reynolds number cavity.  Left: 
FOM, middle: standard ROM, right: stabilized ROM. 

Standard ROM 
(𝑀 = 4) 

Stabilized ROM 
(𝑀 = 𝑃 = 4) DNS 

Appendix: Numerical results: low Re 
number cavity 



Standard ROM 
(𝑀 = 20) 

Stabilized ROM 
(𝑀 = 𝑝 =20) DNS 

Appendix: Numerical results: moderate Re 
number cavity 

• 𝑢-velocity at time of final snapshot for low Reynolds number cavity.  Left: 
FOM, middle: standard ROM, right: stabilized ROM. 



Appendix: CPU times  

• Tables gives CPU times (CPU-hours) for offline and online computations 

Procedure Low Re Cavity Moderate Re 
Cavity 

FOM # of DOF 288,250 243,750 

Time-integration of FOM 72 hrs 179 hrs 

Basis construction (size 𝑀 + 𝑃 ROM) 0.88 hrs 3.44 hrs 

Galerkin projection (size 𝑀 + 𝑃 ROM) 5.44 hrs 14.8 hrs 

Stabilization 14 sec 170 sec 

ROM # of DOF 4 20 

Time-integration of ROM 0.16 sec 0.83 sec 

Online computational speed-up 1.6e6 7.8e5 

o
n

lin
e 

o
ff

lin
e

 

• Stabilization is fast (𝑂(sec) or 𝑂(min)). 
 

• Significant online computational speed-up! 


