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A Quick Overview of Penetrators

= Penetrators [shown on the right] utilize a
brute force application of kinetic energy to
break and flow through a target.

= A brute force approach is to utilize massive
amount of ordinance.

= More precise application of momentum _
penetration can be achieved via a long rod Explosively Formed Massive
type penetrator Penetrator Ordinance Bomb

= Explosively formed penetrators and shape
charges allow for a smaller initial form factor
and use the same explosive charge to both
propel and shape liners to the desired
penetrating shape

= Atypical EFP requires high amounts of heat
and pressure which cause a liner to invert
and collapse to the well known bullet shape

Kinetic Energy Shaped Charge
(Long Rod) (Jet)
Penetrator




Motivation & Objective i,

= Characterization of temperature within oecocams" OETONATOR rﬂ

i i . ) DETONATOR ON AN N 26975
hypervelocity projectiles is a must to e |
properly model the physics at play. reiter KRS "'_ﬁfmm‘hﬁl

= Shaped Charge Jets ose t\;_* .'& > foms
= Explosively Formed Projectiles S5 % s e
f {l__‘t‘ mmg;cmm
b 4 1705 mm THICK
= Novel experimental measurement s

NOTE:

techniques allow for hypervelocity Gl v e
v MORE . Trmm
< 1M ANY TRAMSVERSE

projectile temperature data. A I

P_L AME

“ALUMIMUM - RETAINING RING

= @Goal: Use recently acquired data evaluate
the accuracy of CTH temperature
calculations.




Experimental Premise UL

Termnpeatune (K)

Johnson-Cook Ly

= Work done by the Army Research n
Laboratory experimentally

measured temperatures.

Termperature (K}

s

= Saturated jet with an EM field.
Decay of this field was measured
via inductance — yielding
conductivity and then
temperature.

Magnetic Soak Coils

Projectile
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Experimental Premise UL

= Decay Time ~ Conductivity e I i

T = ao,d? _
Tt M=

=  Conductivity/Resistivity ~ Temp.
(Domenicali — 1961, up to 1200K)
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Computational Setup (CTH) @&

Materials Time=0.00 us

= 2D Cylindrical 20 - ' L = Domain: 5x100cm
= Eq. of State 25 | ] = Cell Size: 0.0125 cm

= Copper —Sesame [ ] = 3.2 million total cells

= X-14 — JWL : . = 2 hour run time

= Air (opt) - Sesame £

o 15+ .

= Copper Strength Model >

= Johnson-Cook 0L : 1

= Steinberg-Guinan-Lund ]

* Preston-Tonks-Wallace 5[ ]

= Mechanical Threshold Stress |
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Mesh Resolution
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Mesh Resolution ) 2=
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Pressure Time=12.00 pys
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Example Simulation @&,

Temp Time=12.00 pjs  Temp Time=28.00 us 3Eemp Time=36.00 ps
30

(Kelvin)
1400

1300
1200
1100
1000
900
800
700
600
500
400
300




Example Simulation - Videos UL

Temp Time=0.00 ps




Results - Temperature ) =,
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Results - Temperature
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Results - Temperature ) S,
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Results - Temperature ) .
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Software

Results - Temperature
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Strength Models

= Johnson Cook: An Empirical
Formulation of Strength

= Steinburg-Guinan-Lund: A semi
empirical model developed for
high strain rate and extended to
low strain rate

= Preston-Tonks-Wallace: Includes
mirco structural considerations
for strain rates up to 107 s

= Mechanical Threshold Stress:
Models Flow Stress for very high
strain rates up to 1011 s

7| Netorw
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-
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Figure 9. Comparison of Computed Shapes and
Test Results for Cylinder Impact Tests at
Various Velocities

Johnson, G. R. and Cook, W. H., 1983. A constitutive
model and data for metals subjected to large strains,
high strain rates and high temperatures. In: Proc. 7t
International Symposium on Ballistics: pp. 541-547.
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Results - Temperature .

= Johnson-Cook
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= Steinberg-Guinan-Lund
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Results - Temperature UL

= Preston-Tonks-Wallace

p
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Comparison of Jet Structure ) .
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Comparison of Jet Structure ) .
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Additional Factors ) 2=
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EFP Study

= See our poster/presentation!
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Concluding Remarks

= Data is now available to benchmark dynamic temperature
calculations.

= Choice of strength model is critical in shaped charge
applications, due to the fundamental role of plasticity in jet
formation.

= Of commonly used strength models in CTH, Steinberg Guinan
Lund appears to most accurately predict in-situ temperatures
of shaped charge jets.

= |n addition to temperature, most models capture jet
formation and shape well when comparing to experimental
radiographs.
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