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A Quick Overview of Penetrators

 Penetrators [shown on the right] utilize a 
brute force application of kinetic energy to 
break and flow through a target.

 A brute force approach is to utilize massive 
amount of ordinance. 

 More precise application of momentum 
penetration can be achieved via a long rod 
type penetrator

 Explosively formed penetrators and shape 
charges allow for a smaller initial form factor 
and use the same explosive charge to both 
propel and shape liners to the desired 
penetrating shape

 A typical EFP requires high amounts of heat 
and pressure which cause a liner to invert 
and collapse to the well known bullet shape
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Motivation & Objective

 Characterization of temperature within 
hypervelocity projectiles is a must to 
properly model the physics at play.
 Shaped Charge Jets

 Explosively Formed Projectiles

 Novel experimental measurement 
techniques allow for hypervelocity 
projectile temperature data.

 Goal: Use recently acquired data evaluate 
the accuracy of CTH temperature 
calculations.
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Experimental Premise
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 Work done by the Army Research 
Laboratory experimentally 
measured temperatures.

 Saturated jet with an EM field. 
Decay of this field was measured 
via inductance – yielding 
conductivity and then 
temperature.



Experimental Premise
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 Decay Time ~ Conductivity
� = �����

 Conductivity/Resistivity ~ Temp.
(Domenicali – 1961, up to 1200K)

y = 0.0073x - 0.5405
R² = 0.9983

0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000 1200

R
e

s
is

ti
v
it

y
 (

m
ic

ro
O

h
m

 -
c

m
)

Temperature (Kelvin)



Computational Setup (CTH)
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 2D Cylindrical

 Eq. of State

 Copper – Sesame

 LX-14 – JWL

 Air (opt) - Sesame

 Copper Strength Model
 Johnson-Cook

 Steinberg-Guinan-Lund

 Preston-Tonks-Wallace

 Mechanical Threshold Stress

 Domain: 5 x 100 cm

 Cell Size: 0.0125 cm
 3.2 million total cells

 2 hour run time
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Mesh Resolution
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cm/cell
• 0.03
• 0.025
• 0.02
• 0.0125
• 0.01

 Cell Size: 0.0125 cm
 3.2 million total cells

 2 hour run time



Mesh Resolution
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cm/cell
• 0.03
• 0.025
• 0.02
• 0.0125
• 0.01

 Cell Size: 0.0125 cm
 3.2 million total cells

 2 hour run time

 Velocity Convergence

 Temperature Convergence

 Comparable to ALEGRA sims

9.15 km/s, exp
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Example Simulation
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Example Simulation - Videos
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Results - Temperature

Steinberg-
Guinan-Lund
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Results - Temperature
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Results - Temperature

Steinberg-
Guinan-Lund

1167 K
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Results - Temperature
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Software Strength Model Temp. (K) Experimental Temp. (K) Percent Error

CTH

Johnson-Cook 958

1190±50

22%

Steinberg-Guinan-Lund 1167 1.9%

Preston-Tonks-Wallace 1012 15%

Mechanical Threshold Stress 964 19%

ALEGRA

Johnson-Cook 850 29%

Steinberg-Guinan-Lund 1260 6%

Results - Temperature
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Strength Models

 Johnson Cook: An Empirical 
Formulation of Strength 

 Steinburg-Guinan-Lund: A semi 
empirical model developed for 
high strain rate and extended to 
low strain rate

 Preston-Tonks-Wallace: Includes 
mirco structural considerations 
for strain rates up to 107 s-1

 Mechanical Threshold Stress: 
Models Flow Stress for very high 
strain rates up to 1011 s-1
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Johnson, G. R. and Cook, W. H., 1983. A constitutive 
model and data for metals subjected to large strains, 
high strain rates and high temperatures. In: Proc. 7th
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 Johnson-Cook
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Results - Temperature



 Preston-Tonks-Wallace
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Results - Temperature



Comparison of Jet Structure
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Comparison of Jet Structure
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Comparison of Jet Structure
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Additional Factors 
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Vacuum Conditions
• Closer to 

experiment
• 1204 K 
• 1.2% Error

Fracture Model
• Johnson-Cook
• 1158 K
• 2.6% Error



EFP Study
 See our poster/presentation!
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Concluding Remarks

 Data is now available to benchmark dynamic temperature 
calculations.

 Choice of strength model is critical in shaped charge 
applications, due to the fundamental role of plasticity in jet 
formation.

 Of commonly used strength models in CTH, Steinberg Guinan 
Lund appears to most accurately predict in-situ temperatures 
of shaped charge jets.

 In addition to temperature, most models capture jet 
formation and shape well when comparing to experimental 
radiographs. 
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Thank You! Questions?


