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Mechanics of capacity fade in lithium-ion batteries  Naow
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Hypothesis: Capacity fade occurs due to structural damage to electrode network

Choi et al (2002); Wilson et al (2011); Images courtesy of Farid El Gabaly, Sandia National Labs



Previous research into mechanical degradation ) hea
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Lithiation-induced particle Lithiation-induced swelling, Mean stress contours and Li flux
fracture. Barai and Mukherjee stress concentrators. in SN0 anodes, swelling 250%.
(2013) Malave et al (2014) Xu et al. (2016)

Microstructural details can have a significant effect on particle network degradation




Outline 71| Netora

= |maging and reconstruction of cathode microstructures
= Conformal Decomposition Finite Element Method (CDFEM)
= Verification: Mesh and domain size requirements
= Representing the active binder

= Effective electrode properties

= Coupled electrochemical-mechanical simulations

=  Summary and a look forward




Imaging battery cathodes 7| Netora

LCO with binder from FIB/SEM, NMC from XRCT, LCO from XRCT,
35 nm resolution, 370 nm resolution, 64 nm resolution,

20 pm domain. 757 um domain. 22 um domain.

Hutzenlaub et al (2012) Ebner et al (2013) Yan et al (2012)

Imaging reveals complex networks; binder can be difficult to detect at scale




CDFEM for mesh generation

7| Netora

 Binarize and label individual particles, surface mesh to STL files (Avizo software)

Ebner (2013)

* CDFEM creates level-set field, cuts background mesh to create conformal mesh
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CDFEM for mesh generation
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Electrolyte

Efficient algorithm to go from images to conformal, multi-phase mesh




Requirements for meshing accuracy 7| Netorw
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1) 2" order convergence

2) Faster convergence for geometry vs. physics
3) Recommend mesh size = voxel size

4) Mesh primarily required at particle contacts

»—» Volume
@—@ Surface Area |
B8 Contact Area
¢—¢ Conductivity
vV
o0

Relative error

Tortuosity
Modulus

¥
‘ i -+= 2nd-Order
, g@g?ﬂtﬁ cles : : - - Resolution
‘10' 1 " : el ] : T
1072 10t 10°

Mesh size [pm]

Focus mesh resolution near particle contacts
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Roberts et al, submitted to J. Comp. Phys.




Domain size / RVE requirements 7| Neoora
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Investing in larger domain / RVE more important than refined mesh

Roberts et al, submitted to J. Comp. Phys.



What about the active (conductive) binder? 7| Netora

Laboratories

* Resolving the location of active binder (PVDF + CB) is much - NMC/AB
more difficult than particle image segmentation. CB/PVDF wt % | Volume Ratio
* Binder is often neglected, assuming non-active void space is 2-2 Wt?’ 9.62
entirely electrolyte. 3-3 wt% 6.23
o ) ) . ) . 4-4 wt% 4.61
Limited imaging results can hint at binder location 5.5 Wt% 361

CB = carbon black
AB = active binder =

PVDF + CB
(b) e graphite
A TOF-SIMS for
graphite anode
.~ / (Tony Ohlhausen)
- : /_’_,"
o fobrke Red: PVDF

Green: Carbon
Blue: Epoxy (Voids)

Superposition of
carbon & fluorine map

Jaiser et al. (2017)

How are electrode-scale properties affected by inclusion of binder?

Jaiser et al (2017); Tony Ohlhausen




Modeling the active binder 7| Netora
(a) (c)

Multiple binder approaches:

(a) Raw: No binder, just particles

(b) Expanded: Expand particles
to give correct porosity

(c) Coating: Coat particles with
uniform binder layer to give
(b) (d) correct porosity

RNANNN

(d) Contacts: Novel algorithm to
place binder near particle
contacts, giving correct
porosity

New contact method gives binder morphology most similar to imaging

-
Trembacki et al, submitted to J. Electrochem. Soc.




NMC has lithiation-dependent properties 7| Netora
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Kam (2012); Amin (2016)




Active binder has lithiation-dependent properties
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Active binder has important electro-mechanical effects

Trembacki et al, submitted to J. Electrochem. Soc.; Data from Grillet et al (2016)




Active binder impacts: Mechanical stresses
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Binder significantly mitigates stress vs. hard particle contacts

Trembacki et al, submitted to J. Electrochem. Soc.



Active binder impacts: Electrical conductivity ) it
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Trembacki et al, submitted to J. Electrochem. Soc.



Electrochemical mathematical model 7| Netora

In the particle

— In the electrolyte

= Ohm’s Law

V- (0¥g;) =0 V- [F (lLﬁ — lng)} =0

= |ntercalated Li conservation

=  Current conservation

= Nernst-Planck fluxes

9Cvi A chem stress\] __ _ _ Val F _
5tV [-MCLY (pi +hii )]=0\ |J;=-D; (%Qﬁwl + VG,
At the interface = Li+ conservation
= Butler-Volmer reaction rate aCaItJiJr +V - -Jr =0
a. F (gb L QSI L qb ) = Electroneutrality
J-n=Jo [eXp< e eq)
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RT

Well-defined mathematical model at the mesoscale

Mendoza et al (2016) 16



Electrochemistry with non-ideal lithium transport ) hea

» Ideal transport (Fickian) model:

Potential  SOC =0.0000  Fickian  Jy; = —DVCy; as
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Mendoza et al (2016)



Mechanical mathematical model 7| Netora

= |ntercalation-induced swelling causes a volumetric strain

E=E

—elastic = —swelling

— K .+ gACLi

—elastic

= For a linear elastic constitutive behavior, swelling is converted to stress
= Analogous to standard “coefficient of thermal expansion” (e.g. Vegard’s law)

g — ; Eelastlc
= g B — g aACL1
=0 E— BACY;

= Generally, volumetric strain is isotropic

=052

= Stress governed by guasi-static momentum conservation

V.o+F =0

Well-defined mathematical model at the mesoscale

Mendoza et al (2016) 18



Electrochemistry results
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Particle confinement leads to 100x higher stress than observed in isolated particles




Electrode breathing: Effect of flexible boundaries  Naow

= Jellyroll boundary conditions can allow macroscopic swelling (breathing)
=  Mimic this effect by controlling stiffness of upper boundary (collector)
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Allowing electrode breathing changes volume partitioning and reduces stress by 1/3

Mendoza et al (2016)




Summary and path forward 7| Netora

= Conclusions
= Lithiation-induced swelling can lead to significant mechanical forces, degradation
= Polymeric active binder plays a critical role in electrical transports, stress generation
= Effective property calculations useful links to battery-scale models

=  Future work
= Coupled electrochemical-mechanical simulations in large NMC domains with binder
= Upscaling results into table look-ups or curve fits for battery-scale models
= Direct integration into battery-scale models; multi-scale approach
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