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Signal Detection Arrival Time Picks

What are we fundamentally doing?
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Figure: Onset Search Window output from STA/LTA algorithm



Signal Detection Sliding Window Algorithm

Sliding Window Approach to Estimating Arrival Time
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Figure: Fit Models Across Onset Search Window



Signal Detection Sliding Window Algorithm

What Models Do We Fit?

M1 is Gaussian White Noise:

Yt ∼ N(0, σ2n) (1)

M2 is Auto-Regressive Moving Average, ARMA(p,q):

Yt = c +

p∑
i=1

φiYt−i +

q∑
i=1

θiεt−i + εt (2)



Signal Detection Sliding Window Algorithm

What Do The Models Look Like?
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Figure: Samples from: (Left) ARMA Process and (Right) Gaussian White
Noise



Signal Detection Sliding Window Algorithm

Find ’k’ that Gives “Best Fit”
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by minimizing:

AIC (M) = −2 logL(M) + 2ρ(M) (3)

where L(M) is the likelihood of model M, and ρ(M) is the
complexity of the model (e.g. degrees of freedom).

L(M2) = −T − k
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Signal Detection Sliding Window Algorithm

Find ’k’ that Gives “Best Fit”
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Figure: Arrival Time is ’k’ that Gives Lowest AIC



Uncertainty Estimation Simulate New Data from Models

Can we get a Probability Density around our Pick?
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Figure: Estimation of Uncertainty of Arrival Time



Uncertainty Estimation Simulate New Data from Models

Imagine a second sensor sitting in same room– could have
recorded the following signal:
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Figure: A Different Realization of Underlying Process



Uncertainty Estimation Simulate New Data from Models

Idea: What We Observe Was Random Realization of
Underlying Process

Generate New Data!

Run Algorithm Again!
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Uncertainty Estimation Simulate New Data from Models

Idea: What We Observe Was a Random Realization of
Underlying Process

Generate New Data!

Run Algorithm Again!

And Do it Again -and- Again!
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Uncertainty Estimation Simulate New Data from Models

Idea: What We Observe Was a Random Realization of
Underlying Process

Generate New Data!

Run Algorithm Again!

And Do it Again -and- Again!

In statistical literature, this is
known as Parametric Bootstrap
Resampling.
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Uncertainty Estimation Simulate New Data from Models

We get a Probability Density around our Pick!

All of Our Arrival Time Picks Create an Uncertainty Estimate!
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Figure: Estimation of Uncertainty of Arrival Time



Uncertainty Estimation Simulate New Data from Models

We get a Probability Density around our Pick!

Figure: Refined Pick + Uncertainty of Arrival Time



Uncertainty Estimation Simulate New Data from Models

Why should we care about Uncertainty?

Do humans always select the same
arrival?



Uncertainty Estimation Simulate New Data from Models

Why should we care about Uncertainty?

Better downstream analyses
incorporate uncertainty:

1. multiple event relocation
2. event associations



Computers -vs- Humans SPEAR Dataset, Zeiler & Velasco (2009)

We Compare to Human Analysts

Figure: Estimate from 50 Sampled Waveforms.



Computers -vs- Humans SPEAR Dataset, Zeiler & Velasco (2009)

We Compare to Human Analysts

Figure: Estimate from 100 Sampled Waveforms.



Model Validation Model Validation

Model Uncertainty and Data-Driven Choices
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Figure: Different Models Find Different Arrivals



Model Validation Model Validation

Model Uncertainty and Data-Driven Choices
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Figure: Different Models Find Different Arrivals
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