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Overview
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• At Sandia, we have a first principles capability for studying 
excitations in warm dense matter. 

• We can study: 
• Dynamic structure factor 
• Stopping power 
• Optical conductivity 

• Our method is computationally expensive, but all electrons are 
treated consistently and we have few free parameters.

• Using our XRTS work as motivation, we will describe: 
• What happens when we (naively) go beyond linear response
• Point to deficiencies in our TDDFT (as implemented) 
• Sketch out a path forward 

• To describe non-LTE properties, we need to expand vanilla TDDFT
Linear Response & Beyond
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Consistent treatment of all 
electrons

DSF of 3x-compressed Be  
Lee, et al., PRL 102 (2009)

Dashed lines = frozen K-shell 
Decorated lines = thawed K-shell
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Consistent treatment of all 
electrons

DSF of 3x-compressed Be  
Lee, et al., PRL 102 (2009)

Dashed = Mermin dielectric + ab-
initio conductivity 

Plagemann, et. al., NJP 14 (2012)

Dotted = TDDFT “free-free”
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Consistent treatment of all 
electrons

DSF of 3x-compressed Be  
Lee, et al., PRL 102 (2009)

Dashed = Average atom with 
Slater exchange 

Souza, et. al., PRE 89 (2014)

Dotted = TDDFT “bound-free”

mailto:adbacze@sandia.gov?subject=


Mail: adbacze@sandia.gov

Real-time thermal TDDFT
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⇢(r, t) =
X

n,k

fn,k(Te)|�n,k(r, t)|2
• Density built from TD orbitals with fixed Mermin weights

• Orbitals verify the TD Kohn-Sham equation

i
@

@t
�n,k(r, t) =

✓
�r2

2
+ vS [⇢] (r, t)

◆
�n,k(r, t)

vS [⇢] (r, t) = vext(r, t) + vH [⇢] (r, t) + vxc [⇢] (r, t)

• Potential = x-ray probe envelope + adiabatic Hxc approximation

�
⇢,⇢

(q,�q,!) =
�⇢(q,!)

�v
ext

(q,!)
S(q,!) = � 1

⇡

= [�⇢,⇢(q,�q,!)]

1� e�!/kBTe

• Fluctuation-dissipation gives us an exact DSF functional
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Cartoons > mathematics
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A. Time-dependence of 
perturbing pulse 

B. Density response at 
pulse peak 

C. Density response at 
response peak 

D. Plasmons ring around 
system at late times

Linear Response & Beyond

mailto:adbacze@sandia.gov?subject=


Mail: adbacze@sandia.gov

Why real-time thermal TDDFT?
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Energy domain Time domain

• Diagonalize dense matrix (cubic) • Propagate KS orbitals (linear)
• Requires only thermally occupied 

states
• Requires many unoccupied 

virtual states
• Limited scalability (100s of CPUs) • Massively parallel implementation 

(100ks of CPUs)
• Restricted to linear response

• Linear response is simply one 
limit of the theory

• Just because we CAN go beyond linear response, doesn’t mean it is easy…

mailto:adbacze@sandia.gov?subject=


Mail: adbacze@sandia.gov

How does this compare to experiment?
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Compare to energy 
domain TDDFT and 

experiment from 
Cazzaniga, et al., PRB 

(2011)

RT-TDDFT (LDA)
LR-TDDFT (LDA)
LR-TDDFT (RPA)
Experiment
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RPA = time-dependent 
Hartree approximation, 

but not applied to jellium

High resolution data from condensed matter calibrates expectations

Linear Response & Beyond
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3x-compressed Be, non-collective 
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3x-compressed (+/-7%) Be  
Ti=Te=13 eV (+/- 3 eV)

Souza, et al., PRE, 89 (2014)

Linear Response & Beyond
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• Convolving with Mn 
source yields agreement 
with experiment 
comparable to other 
levels of theory

Souza, et al., PRE, 89 (2014)

TDDFT

Linear Response & Beyond

3x-compressed Be, non-collective 
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Isochoric Al, collective
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• LCLS beam used to isochorically 
heat and probe Al to Te = 6 eV

• Collision models beyond Born 
approximation needed for fit
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• LCLS beam used to isochorically 
heat and probe Al to Te = 6 eV

• Collision models beyond Born 
approximation needed for fit

Linear Response & Beyond

• TDDFT uses 11-electron PAW + PBE 
• Spread indicates plausible range of ion features 

Isochoric Al, collective

Can we simulate both the pump and the probe?
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Can TDDFT capture isochoric heating?
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Ambient Be… …exposed to 1.5 keV x-ray

Linear response: time step set by bound-free energy scale
Beyond linear response: time step set by x-ray energy scale
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Strongly driven ambient Be
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• Drive amplitude is 1000x 
larger than amplitude that 
gives linear response DSF

• Hartree energy is observable

• Increases for < 1 fs and 
saturates for all energies
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Strongly driven ambient Be (cont.)
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• Spectral decomposition 
normalized by drive 
amplitude

• Plasmons driven off-resonance

• Coupling to K-shell does not 
show up in Hartree energy…

• K-shell band energy follows 
x-ray drive…
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What is missing?
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1.) Kohn-Sham occupancies don’t know how to change!
⇢(r, t) =

X

n,k

fn,k(Te)|�n,k(r, t)|2

2.) Even if they could, we don’t have high (~keV) energy states  
into which we can directly drive core electrons…

3.) Nor do we have the possibility of capturing Auger processes…

4.) Not only do we need to treat these excitations, but we need a 
reliable method for capturing their equilibration…
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Where do we go from here?
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⁃ Multi-configuration atoms
⁃ Electrons equilibrate 

instantly or classically
⁃ Heuristic treatment of 

coupling to environment

⁃ Single configuration atoms   
⁃ Electrons can’t equilibrate 

on their own
⁃ Consistent treatment of 

coupling to environment

State-of-the-art Kinetics Real-time TDDFT
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Where do we go from here?
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Quasi-free
electrons

- Integrate out high energy sector / create self-energy

- Partition Hamiltonian into low and high energy sectors:

KS-DFT Hamiltonian for
each charge config.

Coupling at fixed
total charge

HKS(Be
n+) +HHE +HKS,HE(Be

n+)

G(Ben+) = GKS(Be
n+) + GKS(Be

n+)⌃(Ben+)G(Ben+)
Art is in creating an efficient approximation

Another self-energy couples charge configs.

- Solve Kadanoff-Baym equations with x-ray drive and 
ambient initial condition 

Self-energy approximation bootstraps in
non-adiabatic effects

"
i
d

dz
�

M

n

H
TDKS

(Ben+, z)

#
Go(z, z0) = �(z, z0) +

Z

�

dz0⌃̃(z, z0)Go(z, z0)

Adiabatic TDDFT Hamiltonian in
each charge sector
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Conclusion

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia 
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department 
of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Real-time TDDFT is a powerful tool for capturing linear 
response of warm dense matter - but important non-LTE 
physics can only be captured by extending the theory

• Development of such a formalism is ongoing 
• Green’s functions in WDM facilitated by recent results from Moussa 
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Static structure factor
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• DFT may fail low q electron-electron static structure factor

• TDDFT gives exact functional 
for static structure factor  
…DFT does not

• TDDFT agrees well with: 
• Quantum Monte Carlo 
• Configuration Interaction

S0(q) =

1Z

�1

d!S(q,!)
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