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Polyurethane Foam

176 kg/m3 (11 pcf) 320 kg/m?3 (20 pcf) rigid 30.5cm (12 in.) tall billet
polyurethane foam polyurethane foam




Experiments on 176 kg/m?3 (11 pcf) Foam ) e
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Experiments on 192 kg/m?3 (12 pcf) Foam

Unlike metals, foams exhibit large permanent volume changes — volumetric plasticity
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Experiments on Flexible Foam
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DMA shows Tg ~ -35 °C
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Foam Micromechanics, Cell Geometry — Andy Kraynik ) fm,

Need spatially-periodic representative volume

Kelvin

800pm 30X

TufFoam (L. Whinnery, SNL)

Weaire-Phelan

Plateau borders

A.M. Kraynik, "Foam structure: From soap froth to solid foams." MRS Bulletin 28.04 (2003): 275-278.
W. Thomson, Lord Kelvin, "On the division of space with minimum partitional area", Phil. Mag. vol. 24 (1887), 503.

D. Weaire and R. Phelan, "A counterexample to Kelvin's conjecture on minimal surfaces", Phil. Mag. Lett. 69 (1994), 107.
Prof. K. Brakke, Susquehanna University, Surface Evolver, www.susqu.edu/brakke/evolver




Cell-Level to Macro Connection

Weaire-Phelan Unit Cell Periodic b.c.: PP = pa 4 p*

Fb “Equivalent”
Continuum

1 1
= — n gn
Gi]-——fai]-dv—— Pi F]
volume volume 2 ,
n=periodic
nodes

Macroscopic Cauchy Stress for “Equivalent” Continuum
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G.W. Wellman, ‘A Simple Approach to Modeling Ductile Failure, SAND2012-1343, Sandia National Labs., June 2012.



WP Cell Model Compression — 20 pcf Foam =
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WP Cell Model - Tension h m,,' ol

axial strain 0.06 _ _
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Yield /Damage Surfaces Proposed for Rigid Foam

Triantafillou et al. (1989) Stretched ellipsoid w/ buckling cap.
Neilsen et al. (1995). Principal stress criterion.

Puso and Govindjee (1995) Stretched ellipsoid w/ ellipsoidal cap.
Zhang et al. (1998). Ellipsoid about hydrostat, pressure offset.
Deshpande and Fleck (2000) Ellipsoid about hydrostat — metal foams Hydrostat
Deshpande and Fleck (2001) Ellipsoid capped by max. compressive principal stress surface

Experiments and Cell Level Models indicate we should use

Ellipsoid capped by maximum tensile stress damage surfaces

Gibson, L.J., and Ashby, M.F., Cellular Solids — Structural and Properties, Pergamon Press, New York, 1988
Neilsen, M. K., Krieg, R. D., and Schreyer, H.L., Polymer Engineering and Science, 35, No. 5, pp. 387-94, 1995
Puso, M.A., and Govindjee, S., ASME MD-Vol. 68/AMD-Vol. 215, Mechanics of Plastics & Composites, 1995
Zhang, J., Kikuchi, N., Li, V., Yee, A., and Nusholtz,G., Intl. J. Impact Engr., 21, No. 5, pp. 369-386, 1998.
Deshpande, V.S., and Fleck, N.A., J. Mech. Phys. Solids, 48, pp. 1253-83, 2000.

Deshpande, V.S., and Fleck, N.A., Acta. Mater., 49, pp. 1859-1866, 2001.



UCPD Model for Rigid Foam
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UCPD Model for Rigid Foam
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Flex Foam Model for Flexible and Rigid Foam

RIGID ~ UCPD MODEL
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Flex Foam Model Parameters and State Variable Names ™ :m

Flex Foam Model Parameters

begin parameters for model flex_foam

youngs modulus
poissons ratio
phi

flow rate

power exponent
dev multiplier
tensile strength
adam

bdam

E=E,-E() E(¢)

= 2400.0
0.050
0.520
1.000
3.000
0.2
500.0
1.0

0.5

v=v,-v(0) v(g)

youngs function

poissons function
youngs phi function
poissons phi function
rate function

exponent function

shear hardening function
hydro hardening function
beta function

dmod function

dpr function

dmod phi function

dpr phi function

damage function

f_Modulus
f Constant
f E

f Constant
f Rate
f_Expo

f Shear

f Hydro

f Beta
d_Modulus
f Constant
f E

f Constant
f Damage

end parameters for model flex_foam

State Variables

damage
denergy
dstrain
emax
epvol
eqps

fa

fb

iter

phi
pwork
vstrain




15 pcf Flexible Polyurethane Foam
Comparison of Model Predictions with Experiments
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Predicted Energy Dissipation with Flex Foam Model i) e
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in Algebra compute:
Diss. Energy = SUM(DENERGY)

Internal Energy is global variable
from ADAGIO




FR3712 Comparison of Model Predictions with Experiments
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PMDI20 Comparison of Model Predictions with Experiments
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Uniaxial Compression of PMDI Foam Block with Steel Rod
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Prediction Depends on Friction




Uniaxial Compression of PMDI Foam Block with Steel Rod

Comparison of Observed and Predicted Deformation



Uniaxial Compression Cellular Silicone Foam

Simulation with 8-element block model
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Uniaxial Compression Cellular Silicone Foam
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TufFoam35 Validation Experiment — Drop Table Crush Test
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Experiment:
Matthew Spletzer, 1528 block underneath moves but
Wei-Yang Lu, 8343 NOT in model.



Summary and Future Work

o Polyurethane foam response depends on temperature and strain-rate

o Polyurethane foam that is Flexible at room temperature can become rigid at cold
temperatures.

o Flex Foam model captures change from Flexible to Rigid

o Both Flexible and Rigid foams exhibit damage when crushed

o Flex Foam model is work in progress. Future work will be to capture effects of
damage on foam moduli




