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Outline

o Observations: Interface faceting
§ Introduction
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o Analytical treatments: Vector thermodynamics, free body diagram
o Modeling framework

§ Modeling framework

o Critical quench and spontaneous faceting
o Facet junctions and interactions

§ Results

§ Concluding remarks and future work



o Σ5 <001> tilt GB in BCC Fe
o GB breaks into {130}/{120} facets
o Thin film (36nm) annealed at  657°C

D. Medlin, Sandia National Labs

Interface Faceting

Σ3 GB in Au
facets

Medlin and Lucadamo (2000) 
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Interface Faceting

Hsieh and Balluffi, Acta Metall. 37 (1989)

Facet 
coarsening

Faceting in phase 
boundaries

Zheng et al., Nature Comm. 7 (2013)



Key Questions

o Energetics associated with GB faceting

o Mesoscale model beyond vector thermodynamics: Facet coarsening

o Use the framework in models of microstructural evolution



Grain Boundaries (GBs)

n

C. Humphreys (some argue it is by C. Frank)

Crystals are like people, it is the defects in them 
which tend to make them interesting

Cahn,  J. Phys. (1982)

High school 
definition 

The real deal

6+i dimensional space

Free energy:

GB geometry described by five 
“macroscopic” degrees of freedom

- Misorientation: (3 DOF) 
Angles {𝛟1 𝚽 𝛟2} to rotate grain 2 into 1

- Inclination: GB plane normal (2 DOF)
n unit vector. {𝚹1 𝚹2} polar angles

�
gb

= �
o

+ f({✓1, ✓2}, T, µi

, {�1,�,�2})



-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

γ

1/γ

ξ

Faceting: Graphically
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1) The plot of 1/γ is non-convex
2) The ξ-vector develops ears

An ear in 
ξ-vector

γ = γ(θ)

ξ-vector

1 / γ(θ)
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o Wulff (polar) plot: γ = γ(θ) 
o Plot of 1/γ
o ξ-capillarity vector

Wulff, Z. Krys. Miner. 34 (1901)
F. Frank, Amer. Soc. Metals  (1963)

N. Cabrera, Sur. Sci. (1964) 
Hoffman and Cahn, Sur. Sci. 31 (1972)

Cahn and Hofmann, Acta Metall. 22 (1974)
Herring, Phys. Rev. 82 (1951)



Faceting: Mathematically

⇠ = �er + �✓e✓o ξ- vector:

§ Interface anisotropy

§ Sharp interface law
Vn = Mgb
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Linearization:

γ = γ(θ) 
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Thermodynamic instability of an initially planar surface with negative 
surface stiffness leads to faceting (hill and valley) structure

W. Mullins, Amer. Soc. Metals (1963)
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:Dislocation with Burgers vector b
due to mismatch in translation
vectors of interfaces

⌧ :Interface stress. Discontinuity 
across junction leads to line forces

F
tot

= f
inter

+ f
local

+ f
nonlocal

Anisotropic 
interface Junction energy due to dislocation 

and interface stress
Non-local interactions between 
dislocations and point forces

Dimitrakopulos et al., Inter. Sci. (1996)

Hamilton et al., Phys. Rev. Lett. (2003)

Energetics of a Faceted GB

Experimental
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§ Total energy

F
tot

=
a1
⇤

ln⇤+
a2
⇤

Λ: facet length
a1, a2: material constants

Sutton and Balluffi (1994)

𝚲

𝚲 :Average facet length scale

§ Fix misorientation and vary inclination



§ Structural order parameter
o Mean curvature:
o Higher order expansion: 

§ Total energy

Anisotropic GB
(fit via atomistics)

Local facet junction energy
(Willmore regularization)

facet junction-junction 
interactions 
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§ Dynamics
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Liu and Metiu, Phys. Rev. B 48 (1993)

Phase Field Framework

Abdeljawad et al., J. App. Phys. 119 (2016)

Stewart and Goldenfeld, Phys. Rev. A (1992)

Model parameters: 𝜀(𝜃), 𝚪o, 𝚪1

Wise et al., App. Phys. Lett. (2005)
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λ = 1.1
δ = 0.05

✏(✓) = � [1 + � cos(8✓)]

Fit to atomistics

Proposed fit

§ The case for Σ5 <001> tilt GB in BCC Fe
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Model Parameters: Atomistics

λ: Nominal GB energy
δ: Strength of anisotropy

γ(θ) 

With four parameters I can fit an 
elephant, and with five I can make 

him wiggle his trunk
J. von Neumann

�gb = a0 + a1 cos(✓) + a2 cos(2✓) + a3 cos(4✓) + a4 cos(6✓)

+ a5 cos(8✓) + a6 cos(16✓) + a7 sin(✓) + a8 sin(2✓)

+ a9 sin(4✓) + a10 sin(6✓) + a11 sin(8✓) + a12 sin(16✓)

Notice the presence of 
ears in 𝛏-vector

Model parameters: 𝜀(𝜃), 𝚪o, 𝚪1



Linear Stability
o Assume Fourier modes:

o Dispersion relation:

o Max growth rate: 
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Γo: Junction energy
Γ1: Junction interactions
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J. von Neumann

Young man, in mathematics you don't 
understand things. You just get used to them.

Model parameters: 𝜀(𝜃), 𝚪o, 𝚪1



Linear Stability (cont.)

o Regions of instability decrease in size 
as facet junction energy increases

o Faceted GBs with large spacing 
between junctions
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Shaded regions correspond to 
unstable perturbations

Facet junction energy with no 
interactions (𝚪1 = 0)

Abdeljawad et al. J. App. Phys. 119 (2016)

Γo: Junction energy
Γ1: Junction interactions
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Results: A Two Grain Structure

Grain 1Grain 2 Grain 2

x

y

o Vary local junction energy (Γo) and junction interactions (Γ1) independently

n

n



Results: Facet Junction Energy Γo
§ A two-grain slab geometry
o Facet length scale increases with (Γo)
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Increasing facet length scale

Abdeljawad et al. J. App. Phys. 119 (2016)



Results: Junction Interactions Γ1
§ A two-grain slab geometry
o Γ1 > 0

n

Grain 1 Grain 2Grain 2



Results: Junction Interactions Γ1
§ A two-grain slab geometry
o Negative (Γ1) plays a stabilizing role
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Abdeljawad et al., J. App. Phys. 119 (2016)

Facet growth: ⇤ / t1/4

Normal grain growth: hDi / t1/2
Dynamical 
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Results: Atomistics
§ Atomistic simulations
o Fix misorientation (Σ5) and inclination (26.565° from {310} plane)
o Vary number of facet junctions for a given system size

Facet coarsening is favored

Medlin, Hattar, Zimmerman, Abdeljawad and Foiles, Acta Mater. (2017)
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Future Work

o Dependence on both polar angles:

o Anisotropic GB mobility:

§ Faceting in 3D (underway)

Mgb = Mgb(✓1, ✓2)

�gb = �gb(✓1, ✓2)

Homer, Patala, Priedeman, Scientific Reports (2015)



Thank you

fabdelj@sandia.gov

Medlin, Hattar, Zimmerman, Abdeljawad and Foiles, Acta Mater. 124 (2017)

Abdeljawad, Medlin, Foiles, Hattar and Zimmerman, J. App. Phys. 119 (2016)
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§ Order parameters “phase fields”

ϕ1 = +1
ϕi≠1 = 0

ϕ2 = +1
ϕi≠2 = 0

ϕ3 = +1
ϕi≠3 = 0

ϕ4 = +1
ϕi≠4 = 0 ϕ5 = +1

ϕi≠5 = 0

ϕ6 = +1
ϕi≠6 = 0

§ Coarse grained free energy

o Concentration (alloying elements)
o Crystallographic orientation of grains (internal interfaces)
o Mass density (solid, vapor, liquid)
o Displacement fields

o Bulk thermodynamics
- Phase transitions (solidification, martensitic, etc…)
- Multicomponent

o Interfacial energies and thermodynamics 
- Gibbs-Thomson boundary condition (Stefan problem)
- Anisotropy

Machinery: Phase Field (cont.)

§ Dynamics driven by minimization of energy


