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Material for Power Electronics

Si (1.1 e V) — Today’s standard
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Many commercial devices
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Critical electric field postulated
to scale as E. ~ E;25 (currently
under investigation)

But alloy scattering reduces
mobility — Implies that high Al
composition is best target

Hudgins et al., IEEE Trans. Pwr. Elec. 18, 907 (2003); M. E. Coltrin and R. J. Kaplar, J. Appl. Phys. 121, 055706 (2017)
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S (Nishikawa et al., 2007)

Pd/Au
- —— T
Al.Ga, N vertical PiN diode (0 < x,, < 0.57) Drift region | P | Vertical
mm) | -ALGa N | injection
 Drift Layer: ~ 0.2 um, N, ~ 2x10!¢ cm3 Conducting i, %
. SiC substrate n-Al Ga, N buffer
* N-SiCsubstrates, R, ., =1.45 mQ-cm? (x,, = 0.22) ) [ s
I
Ti/Au
Reverse breakdown E.~ 8 MV/cm Higher forward turn-on for
<200V (2x GaN) _ increasing Al %
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» Breakdown voltage increases with larger bandgap
Nishikawa etal, Jap.). Appl. | 3> Critical electric field scales as E 2’
Phys. 46 (4B), 2316 (2007)
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POWER ELECTRONICS AIO.3GaO-7N PIN Dlode
SiN, Pd/Au . . . .
A an * Drift region doping mid-101¢ cm3 n-type
PR G DA * Record Vi?/R,, i, = 150 MW/cm?, >20x higher
(drift region) . .
Ao N 45 than any previously published result
e * Drift region thickness = 4.3 um, likewise >20x
) i grade . .
| AbsGaorN — 1.0 ym greater than previously published results
(contact) o
n+ Ay GatgsN — 1.2 um  Current density up to 3.5 kA/cm? measured
uid-Al, ;Ga, ;N — 0.6 um
AIN = 1.6 um
sapphire substrate -1.3 mm 4t 15 -
10°
Forward bias luminescence L b
-1 < 'g 10 - 16 mQ-cm?
8 3 5 0.5
1 L
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A. Allerman et al., Elec. Lett. 52(15), 1319 (2016)
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Critical Electric Field Scaling and

Thicker Drift Regions for Higher Vg

Critical Electric Field vs. Bandgap
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More recent devices grown using
thicker drift regions show higher
breakdown voltage
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* 4.3 um Al, ;Ga, ;N drift region is
punched-through at breakdown

* Punch-through analysis indicates E_ =
5.9 MV/cm, consistent with E.~E 2>
scaling (avalanche not yet proven)

Equipment

Limited
i

0.0 -

—55um
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— 9 um

— 11 um

1 - Armstrong EL 2016; 2 — Allerman EL 2016; 3 — Nishikawa et al. JJAP 46 (4B), 2316 (2007)
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P-GaN
. é Brea(ﬂk(s;)wn No (cm-3) Drift (um) Material Group Ref
GaN diode
. 4.7 2/9/16e15 33 GaN Hosei Univ. EDL 36 p1180 (2015)
(Vertical)
4.0 2-5e15 40 GaN Avogy EDL 36 p1073 (2015)
N+ GaN Substrate
s 3.9 3el5 30 GaN Sandia EL 52 p1170 (2016)
3.7 5el15 >30 GaN Avogy EDL 35 p247 (2014)
P Contact
AlGaN diode p-30%AIGaN 3.48 1/3/12e15 32 GaN Hosei Univ. IEDM15-237 (2015)
>3 0.8-3el6 11 30%-AGaN Sandia This work

(Quasi-vertical)

N-contact - 3.0 0.8-3el6 9 30%-AGaN Sandia This work

N+ 30%AIGaN (Contact) JpnJ Appl Phys 52

3.0 1/10e15 20 GaN Hitachi

AIN ’ p028007 (2013)
Sapphire
Advantages of Ultra-Wide-Bandqgap AlGaN
GaN Aly 3Gag /N
N, (cm-3) low 10%° low 1016
20.30 10 & Larger
Drift = ~
rift (um) Ec & EG
TDD (cm-2) <106 low 10° € |mpact?
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Punch-Through
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Al, ;Ga, ;N PiNs: Doping
Dependence of Breakdown
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Non-Punch-Through

>
- = 50% efficiency WP = WD
EC
Wp = 5.5 um
punch-through non-punch-through Wp
region region W,
p+ n n+
18
\ 10 SECZ
n- region doping(cm™) Vbr =
2qN

* C-V measurements performed to determine net doping of the drift region (n- layer)
* V, of highest performing diode for each doping concentration compared with theory
-> JTE layer is as high as 70% efficient assuming critical electric field is 6 MV/cm
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Edge Termination for High () i
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Breakdown Voltage

p

n- drift layer

Pass.

intrinsic

p-

A

A

y P

n- drift layer

Junction Termination

Extension (JTE)

J. Dickerson et al., IEEE TED 63(1), 419 (2016)

Effective edge termination is required to
avoid premature lateral breakdown

reverse bias =
—0.9kV

Depth [pm]

- EBIC
B line scan

JTE isolation
probe
tip e-beam
t SiN
| I— | | probe,
p+ | | | intrinsic | | tip
n-
IR ] |
substrate | |

%(A )
0 20 40 60 80 100

tp layer thickness [nm]
EBIC characterization to

determine electric field
distribution

TCAD simulation
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Bwen tLE T hon e Diode on Sapphlre
P Contact ® Heterojunction PN diodes (p-30% / n-70%)  Optical image of diode
p-30%AlGaN __

» Utilize p-type doping of 30%-AlGaN
* Drift region: 5.3 um (Total: 10 um)
* N,=2-4x10'%cm3

n-70%AlGaN (contact)

e TDD~1-2x10°cm? (Best: 5x10% cm™?)

Sapphire
PP * R,=600 Ohm/sqr. (Best: 70 Ohm/sqr.)
Reverse IV Characteristics Forward IV Characteristics
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= \ O 20 o
O 4, / spreading limits R,
k 1.E-05 / ‘ ‘
00 1E08 S S
-1500 1000 -500 0

Voltage (V) Voltage (V)




Sandia
National
Laboratories

Prior Work on AlGaN/AlGaN HEMTs
(Nanjo et al., 2008)
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Breakdown voltage of AlIGaN
HEMTs vs. G-D spacing

2000 ¢
; l(’(x) .;_ ................... Higher AI
o | composition in the
© L .
S 2N channel and barrier
S 800 U - b .. S results in higher
s | ; i | breakdown voltage
= 400F A 6% / GaN ] i
< S AR for fixed G-D spacing
-
()“ 2 4 6 3 10 12

Gate-Drain Spacing (um)

Nanjo et al, Appl. Phys. Lett. 92, 263502 (2008)
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it AIN Barrier, Al 3sGa, ;5N Channel

Circular Geometry

2 2 10
s [2ym2um  10pm J D
G SiN dielectric Source
. - n* GaN
n* GaN| 48 nm AIN barrier Gate

400 nm Alg g5Gag 5N channel

’I
-

1.7 um AIN buffer

Sapphire substrate

-
pal P

-~ “-——_"

Process Steps: RO -

i

1. SiN deposition, photolithography, SiN etch, AIN etch, PR
removal, GaN:Si regrowth, SiN removal

2. Photolithography, ohmic metal deposition, lift-off, RTA

. Gate photolithography, evaporation, lift-off

4. SiN deposition, photolithography, SiN etch (pads)

w
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A. G. Baca et al., Appl. Phys. Lett. 109, 033509 (2016)

AIN/Al, ;-Ga, ;,-N HEMT Shows L=
Transistor Characteristics

» Operates like a Field-Effect
Transistor
* Good gate control and
pinch-off
* Highest bandgap
demonstrated in a
transistor (5.7 eV
channel)
» Not ideal in some aspects
e Source and drain
contacts are quasi-
rectifying
* As aresult, drain
current is ~“40x lower
than expected from
sheet resistance
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TR Demonstrated for Lower Al%
AIN/Al, ;.Ga, ;sN HEMT Comparison: Al, ,sGa, ;;N/Al, ;Ga, ;N HEMT
(previous slide) with state-of-the-art Ohmic contacts
2 T 15 15 15 T
+3V =V, VG
g Start=2V
15 +2V e 80 ¢ Step=-1V i
£ 3 Stop =-5V
<L
E £ 60 -
E 1 +1V -lqé;
, 5 40 -
1] L
5 N 8 20 .
-2V ()
0 g -3V
0 5 10 15 20 25 0]
Drain Voltage (V) 0 2 4 6 8

Drain Voltage (V)

> Midrange Al,Ga, N alloy channel composition
* Source/drain contacts with low 10> Q-cm?
* HEMT channel resistivity (and I _, approaching 100 mA/mm) constrained by mobility, not contacts
* Low drain and gate leakage currents

» FOM will be limited by modest Al composition
* But may have applications as phototransistors or harsh environment electronics
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Low Off-State and Gate Leakage
Currents for AIN/Al, ;:Ga, ;-N HEMT

-
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V=10V

—
oI
o

75 mV/decade

Drain and Gate Current (mA/mm)

Drain Curreﬁt

Subthreshold slope:

lon/lorr > 107

Gate Current

LARSRERRES

-10 5

0

Gate Voltage (V)

» Leakage current near measurement limit

Gate Current (mA/mm)
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Gate Voltage (V)

* Similarly low gate leakage in Al, ,sGa, ;sN/GaN requires insulated gate

* Enabled by high Schottky barrier

* Excellent subthreshold slope, 75 mV/decade

* Excellent l5\/lo ratio >107

A. G. Baca et al., Appl. Phys. Lett. 109, 033509 (2016)
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A. G. Baca et al., Appl. Phys. Lett. 109, 033509 (2016)

Promising Breakdown Voltage () =,
for AIN/Al, ,.Ga, ;N HEMT

= Drain Current
===Gate Current

=-= Drain Current, Frenkel-Poole

Drain Voltage (V)

1000

» Standard gate (no field-plate),
10 um gate-drain spacing
e V;=810V
* Well below theoretical

> Drain current fit with Frenkel-

Poole emission model
* |=AV-exp[(BV)Y?]
« A=1.1x1012 V1
e B=5.0x10%V1!
\‘\\Slope =qgF

Thermal
. emission
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y.. " Summary

» The UWBG semiconductor AlGaN has potential to push the
state-of-the-art in power electronics

. Strong scaling of critical electric field with bandgap
. Alloy scattering points to high Al composition

» Demonstrated kV-class vertical AlGaN PiN diodes
. 30 and 70% drift regions
. Drift region, edge termination, spreading resistance are key

» Demonstrated UWBG AlGaN/AlGaN HEMTs

. Good gate control and leakage current
. AIN barrier device limited at present by S/D contact resistance

The contributions of the entire UWBG Grand Challenge team and the
support of the Sandia LDRD office are gratefully acknowledged




Coalescing a National Community: The (i)
UWBG Working Group (“Guild”)
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Technical Exchange on UWBG Semiconductors:
Research Opportunities and Directions
Basic Research Innovation and Collaboration Center | Arlington, VA

~60 Attendees, representing academia,
industry and government (DoD and DOE)

Purpose of the Technical Exchange: SNL co-organized UWBG Technical Exchange in

= Nucleate a community of like- Arlington, VA on April 24-25 2016
minded researchers Four breakout sessions:
=  Share technical information and * Materials and Epitaxial Growth
R&D * Physics (Transport, Breakdown, Defects)

* Device Design, Architecture, and Processing
* Applications Enabled by UWBG

* Comprehensive report being published in
Advanced Electronic Materials

= Better understand the needs of
potential end-users

= Establish collaborations and
partnerships
= “Build the Guild” * Special out-brief session this afternoon at 3:30




