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Techniques to probe materials at extreme conditions
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Why Quantum Calculations? h) .

« Equations governing the properties of a material under any conditions
are known

I—AI‘P(rl...rN)=E‘P(r1...r )

A Y 1
H=- +
2m 2 oy Z

‘R —r

* Just need to solve the 3N dimensional partlal differential equations
« Approximations are necessary for real materials




DFT — The Most Common Approximation ) .

= Three insights underpin the development of the most commonly used theory

= Physical Insight
)Z\r) JW(r,ry..ry)dr,e+dry

V(r) oc 1/r

= Wavefunction is not an observable but the density is

= Replace the 3N dimensional wavefunction with the 3 dimensional densiy

= Can approximate kinetic energy and develop a sensible density by solving for noninteracting
electrons in an effective potential

= Areasonable approximation is to make the effective potential a simple function of the density
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DFT is a very successful technique for studying WDM

= Careful DFT / QMD calculations can complement experiment by providing
additional information

= This is especially powerful when experiments can validate approximations

Shock melting of diamond

Phase diagram of MgO
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DFT is not perfect ) ..
D, liquid-liquid phase transition

2 i 1 T\ T
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How to get around the approximations? ) .

Recast Schrodinger equation as an integral problem in 3N dimensions

. Y RARYR)IR
< H >=
j ¥ (R)¥(R)dR

Massive parallelism available, each point can be calculated independently

Variational principle lets you know when your approximation is improving

® Poor scaling if nontrivial trial wavefunction

* 3 dimensions per electron
* 20 points in each direction
* 20° =512 billion points for 3 electrons

* 3.8 TB just to store!
® Stochastic Methods scale much better for multidimensional integrals

e Effort for constant error scales as 1/VN regardless of dimensionality = VMC ,




How accurate is VMC? i) fm

= How creative can you be in writing down a many body wavefunction?

Must be antisymmetric for Fermions — Slater determinants

Jastrow factors — Explicitly build in short range correlation

Backflow transformation — Feynman ansatz adding in longer range correlation

Pairing wavefunctions — For example BCS type pairing of electrons

General multideterminant expansions — Cl type ansatz, exact but naively scales factorially

= Parameterized forms are optimized using variational principle

For small chemical systems, can be exact

Accuracy can be uneven when character of system changes




How accurate is VMC?

= Example from literature
= Molecular dissociation of hydrogen

= Langevan dynamics performed using
an AGP wavefunction

= Molecular phase is described much
better than metallic fluid

= Phase transition is moved to higher
pressure
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Taking the next step - Diffusion Monte Carlo (DMC) @ &2

* Project wave function in imaginary time
o0

v (7)) = ch.e
i=0

= Recast projection in integral form

(R, 7+ 57)) = j dRG(R',R,7)|w(R,7))

—HA5t

‘w(r+52')> =e

%)

where G(R'.R.7)=(R'|e""|R)
= QObservables are
s ayw, @) X ar
r|OW,)= .
WrlOlver [ ¥, (R)¥,(R)aR

= For electronic structure, the kinetic term in the Hamiltonian makes this
look like a diffusion equation (in 3N dimensions). Other terms become
sources and sinks
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DMC calculations have been important for decades

Ground State of the Electron Gas by a Stochastic Method

= |n 1980 Ceperley and Alder used - S
DMC to calculate the energy of the ' ' and

B. J. Alder
e I e Ct ro n g a S Lawrence Livermore ubom!ary&z;rz:zué ‘Zp flalu{;;:;a, Livermove, California 94550

D. M. Ceperley
y, La Berkeley Laboratory, Berkeley, California 94720

An exact stochastic simulation of the Schroedinger equation for charged bosons and
fermions has been used to calculate the correlation energies, to locate the transitions

= Results underpinned the basis for i il e ¢ 5 rperre v 0, o i o
many generations of DFT exchange T B
correlation functionals 25f |

= Used exponentially scaling version e
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What approximations are necessary? ) e

= For Fermions wavefunction is not positive definite
= Exchange of particles changes sign of wavefunction

= Statistics of particles is not inherent in Hamiltonian (or propagator)
= Diffusion will proceed to Bosonic ground state
= |f properties are calculated for antisymmetric state, signal to noise -> 0

= Make the "fixed node approximation”
= Assume that trial wavefunction has the same nodes (zeroes) as the exact one

= Don’t allow moves that change the sign of the trial wavefunction

= This is variational in the nodal surface

12
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What approximations are necessary? ) e

= Method is also expensive (but very parallel...)
= Small supercells are required = finite size effects
= |ons tend to be over-structured when supercells are small
= Electrons suffer similar problem, but sophisticated schemes exist to correct this
= Electron temperature is zero
= Minimal condition is that temperature is much less than T,
" Betterif T<<E,,,
= Core valence interaction can be difficult
= Poor scaling with ionic charge
= Replace chemically inert electrons with effective potential
= Forms for potential can introduce approximation
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Where does this work well? ) e

= Best case is where approximations can be tested

Binding Energy of Formic Acid Dimer

20.5 T T T T T T
Interaction-Energy
]
£ 20
©
<
= 195
>
>
2
L 19
(o))
c
5
5 18.5
18
py] L oe 0e o2 e
& 3838 3% 3% &
= ¢ 22 g g 8
= Q ar A 8o o
a




Case study for melting of Xe under pressure ) E..

= Validate approximations for known phase

= Compare E(V) curve of FCC xenon to experiment
= Starting from two different points results in very similar answers
= Both answers compare well to experiment

FCC energies of Xe using different methods
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Upscale limited calculations using thermodynamic
Integration
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* Thermodynamic integration also allows relation of free Melting of Xe under pressure
energies from one interaction to another
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What about applying this to hydrogen

o/p,
. . 3 4 5
= Biggest question revolves around 80 —— T
dissociation of molecules underPand T - e Militzer2000 > .
_ 7oL » Holst2008 . > N
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- - > -
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Why could CEIMC disagree with experiments? @&,

= Reference State

20E-E,, )-(P+P, v, —v)=0

= DMC calculation of isolated D, molecules is exact

= Nuclear quantum effects are accounted for directly

= Experimental data is used for slight correction due to
initial density

= Only question is inconsistency between this and high
pressures
= [ikely a small source of error
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Why could CEIMC disagree with experiments? @&%.

= Finite Size Effects 100HE T . - L\ |
= Electronic ‘ |
= Similar concern to resolving the fermi surface in DFT 90 H'70T
= Not likely to bias the molecular vs atomic question 160} ?
= Extensively explored in Holzman, Clay, Morales, 80T
Tubman, Cepereley and Pierleoni, PRB 94, 035126 70 [ 150 | -
(2016) - |
® |onic 60 140 | I
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Why could CEIMC disagree with experiments? @&%.

= Electronic temperature
= Contribution begins when gap to excited states is
comparableto T
= |n general, the absence of any correction, ignoring
temperature causes too few degrees of freedom
= For dissociation of molecule, zero temperature favors
molecular state

= Tubman paper explored using thermodynamic
integration type approach to add in effect using DFT

1 2
T ((AaU-(aU), ) >H
= DFT and QMC favor different geometries, so spectra

may not be comparable
= See Clay, McMinis, McMahon, Pierleoni, Cepereley
and Morales, PRB 89, 184106 (2014)
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Why could CEIMC disagree with experiments? @&%.

energy to rotate one of two H2 dimers 2.5 angstroms apart

= Nodal Surface 0025 ‘ ‘ ‘ T MRCFIQ e
= CEIMC work uses Slater-Jastrow-Backflow 0.02 wor v |
. dW-| —
Wavefunction _ YoptBats
. . > ingl i —=—
= Such an ansatz does not necessarily capture static g 008 PDMC Mult-Determinant -
: )
correlation correctly 2 oo
= Ongoing problem to handle this for condensed phases 5
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Resolving differences has much potential ) b
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Quantum Monte Carlo has a lot of potential for
contributing to the study of WDM

= Methods are not as mature as DFT, but community is growing
= Nature of supercomputers will make calculations more routine as time goes on

= Results are interesting, but more is to be done to reach benchmark accuracy
® Finite temperature
= Nodal Surface
= Larger Systems
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