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Production of fuels from renewable
feedstocks

» Recent advances in synthetic biology, metabolic engineering, and systems biology, have enabled
the construction of microbial factories for the synthesis of biofuels and other chemicals.

» Renewable feedstocks:
« Edible and non-edible crops
* Waste streams (e.g. bagasse from sugar manufacture, industrial by-products)
»  Agricultural lignocellulosic residues

* Algae
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Distillers’ grains with solubles (DGS)

> 18t generation bioethanol production from corns generates a massive supply of DGS as
coproduct.

» The total amount produced in 2011 was 35 million metric tons in the US.
» DGS are rich in cellulosic polysaccharides and protein.
» RIisk of using as animal feed: mycotoxins, antibiotic residues, sulphur content and

introducing bacterial pathogens.

» Efficient valorization of DGS to produce petroleum replacements will significantly
improve the techno-economic feasibility of the established starch bioethanol process.
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» Engineering a single microbe to
simultaneously optimize multiple metabolic
tasks represents a major challenge under
most situations.

» Microbial consortia: enhanced productivity,
stability or metabolic functionality.

» Consortial interaction motifs:
* Division of labor
*+  Commensalism
* Resource exchanges or cross-feeding

Division of labor

3 Example: Eiteman etal 2008
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<[: 9 ( Bernstein et al. Comput Struct Biotechnol J. 2012, 3(4): €201210017 )
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Engineering an E.coli-E.coli co-culture system for
fusel alcohol production

Sugar fermentation strain: convert sugars to isobutanol and other fusel alcohols.
Protein fermentation strain: convert amino acids to C4 and C5 alcohols.

» Use of an E. coli - E.coli co-culture would minimize problems of dominance of one species and
culture instability.

» It allows the “one-pot” bioconversion of the protein and carbohydrate fractions of the DGS
hydrolysates into fusel alcohols.
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Protelin conversion strain

> Protein utilization strain

- deaminate protein hydrolysates and
convert proteins to C4 and C5 alcohols
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» Improved strain: E. coli AY3

- by modifying the cofactor specificity
of two key enzymes (llvC and YghD)
from NADPH to NADH
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(Wu et al, Algal Research, 2016,19: 162-167 )




Engineering E. coli strain B for fusel alcohol production

using carbohydrates

> E. coli ATCC11303 (Luria strain B) as wild type strain for engineering: has great ability to metabolize
hexose and pentose sugars.

> Deleted Idh gene from the chromosome and replaced with chloramphenicol resistance gene (CmR).
» Cloned the 2-keto acid pathway to strain B - production strain: E.coli BLF2.
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Alcohol production from glucose and xylose
by E. coli BLF2

» The volumetric productivity of the total fusel alcohols produced from xylose was 30%
lower than from glucose.
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Alcohols production from glucose and xylose
by E. coli BLF2

» The uptake of xylose was slow until glucose was completely metabolized, which is
the result of carbon catabolite repression.

» Upto 12 g/L total fusel alcohols were produced.

» Isobutanol comprised ~80% of the alcohol mixture.
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DGS pretreatment and monoculture fermentation by
E. coli BLF2

DGS samples (35% solids) were from Aemetis, Inc., a bioethanol company in CA.

4

> Pretreatment of DGS with 8.5% solid loading: dilute acid (4% H,SO,, incubated in
90°C water bath for 5 hrs) & enzymatic (1.5 mg/ml, 37°C for 48 hrs).

» DGS fermentation by E. coli BLF2
* Glucose was preferentially utilized.
» Arabinose and xylose were utilized when glucose’s concentration was low.
* Incomplete utilization of xylose with a 84% conversion.

Sugar consumption in DGS
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~ 8.2 g/L total fusel
alcohols were
produced at 52 hrs.

Isobutanol comprised
67%.

Alcohol concentration (g/L)

Alcohol concentration (g/L)
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Integrated sugar & protein fermentation of
DGS hydrolysates

carbohydrates —

proteins
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Bioconversion of DGS hydrolysates by
the E. coli co-culture

» The consortium with the 1:1 inoculation ratio of E. coli BLF2 and AY3 achieved the
highest fuel yield.

» Upto 10.3 g/L of total fusel alcohols were produced, including 63% isobutanol.

Alcohols production from DGS by the E. coli co-culture
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Bioconversion of DGS hydrolysates by
E. coli co-culture

» The consortium with the 1:1.5 inoculation ratio utilized glucose and arabinose
completely and about 85% of the xylose in the DGS hydrolysates.

» ~31% of the total DGS proteins were converted.
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Bioconversion of algal hydrolysates by
E. coli co-culture

Algae Reed Nanochloropsis were pretreated by 10% dilute acid & enzymatic (2 g/L,
55°C for 48 hr).

The consortium with the 1:2 inoculation ratio of E. coli BLF2 and AY3 achieved the
highest fuel yield.

Up to 5.6 g/L of total fusel alcohols were produced with isobutanol and isopentanol as
the major products.
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Bioconversion of algal hydrolysates by
E. coli co-culture

» Upto 47% of total carbohydrates were converted.

> 21-29% of the total proteins were converted by the E. coli consortia.
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Conclusions

We demonstrated “one-pot” bioconversion of the protein and
carbohydrate fractions of a DGS hydrolysate into higher fusel
alcohols through development of a microbial consortium
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The mixed fusel alcohol has potential applications as a fuel
additive in gasoline, diesel, jet fuel, heating oil or as a neat fuel of
itself.
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Future work

» Optimization of the DGS fermentation system.
» Scale up the DGS fermentation in 1-L fermenter.

» Improve fusel alcohol production by doing further
strain engineering, e.g. deleting the completing
pathways for the byproducts.
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Dry-mill bioethanol production process and by-
product production streams

Distillation/
—_— Rectification
=4 = Dehydration
+ Water == >
+ Enzymes + Yeast
/ -
v A
1L
i Bioethanol
Cereal storage Milling v -
Saccharification =~ Fermentation
Evaporation Centrifugation
Thin stillage Wet Distillers
(TS) Grains (WDG)

» Distillers Dried Grains
- *  with Solubles (DDGS)
Condensed Distillers

Solubles (CDS)
(A. Chatzifragkou et al. Process Biochemistry. 2015, 50: 2194-2207)

» The whole grain is milled and liquefied - amylolytic enzymes convert starch into fermentable
glucose-> fermentation to ethanol and CO, by yeast

» Ethanol is distilled and dehydrated, whereas the non-volatile components are centrifuged to

8 produce a liquid fraction (thin stillage, TS) and a solid fraction (wet distillers’ grains, WDG)
< Z > 15% or more of the thin stillage is used as backset for the liquefaction of the ground grain and the
oy rest is concentrated into condensed distiller soluble (CDS)
ays) o | . |
Z. 8 » CDS is mixed with WDG and drum dried at high temperatures to produce the final DDGS.
</ » The utilization of a bushel of corn (56 pounds) results in 2.8 gallon of ethanol and 18 pounds of
N DGS. ) Sancia Natio



Higher carbon fusel alcohols

» Advantages: lower hygroscopicity, vapor pressure and corrosivity,
allowing safer handling and more efficient use than ethanol.

» Higher chain alcohols possess elevated energy densities.
» Full compatibility with existing engines and pipelines.

Isobutanol | Ethanol | Methanol

Energy density (MJ/L) 19.6
Vapor pressure (kPa) at 20 ° C 0.7-207 0.53 1.17 7.58 12.8
Vapor pressure of mixture with 53.8-103.4 44.1 46.9 138 800
gasoline (kPa)
Hygroscopicity Low Low Low High High
8 Compatibility with existing Yes Yes Yes No No
< z infrastructure
o
% 8 (Source: BiofuelsDigest, 2016/09/27)
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Engineering carbohydrate fermentation
strain

» Strain selection: E. coli ATCC11303 (Luria strain B)

- able to metabolize glucose as well as xylose which offers an
opportunity to convert both hexose and pentose fractions of biomass.

Final OD.s, of E. coli ATCC strain:

Sugar Plasmid
8677 8739 Y637 11303 11775 14948
Glucose Mone 4.0 3.7 6.1 6.0 4.7 5.6
pLOI1297 10.0 10.5 10.5 10.0 9.5 —
pLOI308-11 98 9.5 11.4 11.2 - 93
Lactose None 4.3 38 7.5 6.0 4.5 6.1
pLOI297 13.0 6.8 11.6 10.8 7.6 —
pLOI308-11 10.0 10.0 11.5 11.0 — 7.3
Xylose None 4.1 3.7 1.7 7.3 4.9 5.9
pLOI297 8.1 10.6 10.8 10.6 4.7 —
pLOI308-11 10.0 6.8 11.4 8.5 —_ 11.4

" —, Mo data available.
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Figure S2. The metabolic networks for the biofuel production from Amino acids. Amino acids
could be deaminated to 2-keto acids or TCA intermediates, which can be directed to pyruvate.
Pyruvate can be extended to longer keto acids by acetohydroxy acid synthase (e.g. AlsS) or
1sopropylmalate synthase chain elongation pathways (LeuABCD). The keto acids could be
converted to aldehydes by broad substrate-range 2-keto acid decarboxylase (KDCs), and then to
alcohols by alcohol dehydrogenases (ADHs).
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Glucose as carbon source Xylose as carbon source
14 14
12 A 12
E 10 M |sobutanol b __'_:n: 10 - M Isobutanol —
f H ethanol f H ethanol
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alcohols were produced.
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DGS mono-culture fermentation
by E. coli AY3

» AY3 converted about 46% protein in DGS hydrolysates .

» Produced a total of 7 g/L fusel alcohols where isopentanol (2-methyl-1-butanol and
3-methly-1-butanol) are the major products.

35 W 4% acid hydrosylate,
t=0 hrs

30 - B 4% acid hydrosylate,
t=72 hrs

25 1
20
15 1
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The effect of DGS pretreatment on
carbohydrate fermentation

> Best pretreatment condition: 4% H,SO,, incubate at 90° C for 5h in water bath.

Isobutanol conc. (g/L)

ot = g w >
o vk LN L w L oa b
|

N

DDG-1 DDG-2 DDG-3 DDG-4

DDG-1 4% H,SO,, 121 ° C for 1h (autoclave)
DDG-2 4% H,SO,, 90° C for 1h (autoclave)
DDG-3 4% H,SO,, 90° C for 5h (water bath)
DDG-4 10% H,SO,, 90° C for 5h (water bath)
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