SAND2017-3611C

[
N

MCR

Confocal

n /7

Normalized Intensity
o o
° o
= *

—

0 4 1 .
500 550 600 650 700 750
Wavelength (nm)

Carotenoid

Spatial, y

Spatial, x &

Adapted from Howard Vindin - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=40722030

Hyperspectral Super-Resolution Imaging
and Data Analysis

Stephen M. Anthony

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

U.8. DEPARTMENT OF VUV YA =)
ENERGY #VIOA
rAdmiistiation Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Nattonal Nuclear Socurtty s
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= Why hyperspectral? — What is hyperspectral
imaging and what are its benefits?

= Sandia’s hyperspectral microscopes — What are the systems |
typically work with?

=  Analyzing hyperspectral data — What can multivariate curve
resolution (MCR) do for you?

= Improving MCR — Ongoing work to improve its capabilities.

= Trilinear Data — How to leverage additional information.




Introduction to Hyperspectral Imaging @&

Set of brightness values for a single
raster cell position in the
hyperspectral image.

Images acquired simultaneously in
many narrow, adjacent wavelength
bands.

é{ A plot of the brightness values

2 5 versus wavelength shows the
continuous spectrum for the
image cell, which can be used
to identify surface materials.
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Smith, R. B. (2012) Introduction to Hyperspectral Imaging. Microimages
http://www.microimages.com/documentation/Tutorials/hyprspec.pdf




Why Use Hyperspectral Imaging? @i,

Conventional Fluorescence Image Image of the endogenous
fluorescence from S.
dimorphous (algae)
undergoing parasitic infection
by A. protococcarum.

= Approximate cell borders
are hand-drawn in white.

= Two of the cells contain
\\, parasitic vacuoles.
= Can you spot the

BEEES00T 1000 1500MMMM  parasitic vacuoles?

Adapted from Collins, A. M., et al. (2014). "Host Cell Pigmentation in
Scenedesmus dimorphus as a Beacon for Nascent Parasite Infection.”
Biotechnology and Bioengineering 111(9): 1748-1757.




Why Use Hyperspectral Imaging? @&,

Fluorescence
Carotenoid & AF Chlorophyli

Bright Field

Collins, A. M., et al. (2014). S0 100 15000
= Parasitic vacuoles (white arrows) are easily spotted using the
combined carotenoid and autofluorescence signal.

= Spotting them is nearly impossible when examining all the
fluorescence together as the chlorophyll signal dominates.

= Hyperspectral imaging reveals otherwise hidden features.
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Why multispectral is not enough  [@&.

Haaland, D. M., et al. (2007). "Hyperspectral confocal fluorescence imaging of sﬁ°13'Nuc’eus X 1{)4 SytoiB-CytopIasm
cells" Next-Generation Spectroscopic Technologies 6765: 76509-76509.
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Left) Fluorescence spectra for two Syto 13 and two autofluorescence
emission components. Right) Relative concentration of the components’
spatial distributions in mouse macrophage cells (Raw 264.7).
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= Multispectral imaging (e.g. filter-based microscopes) would only
distinguish Syto 13 from autofluorescence — two components.

= Hyperspectral imaging can distinguish nearly identical spectra.

—



Hyperspectral Imaging Applications®™

= Fluorescence or Raman microscopy — cell signaling

= Agriculture (satellite or drone-based) — monitoring crop
locations (poppy fields), crop health, disease outbreak

= Chemical detection — Detect airborne chemical hazards at
ppm levels up to 5 km away

= Mineralogy — disturbed ground indicative of improvised
explosive devices
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= Why hyperspectral? — What is hyperspectral imaging and
what are its benefits?

= Sandia’s hyperspectral microscopes — What are
the systems | typically work with?

= Analyzing hyperspectral data — What can multivariate curve
resolution (MCR) do for you?

= Improving MCR — Ongoing work to improve its capabilities.

= Trilinear Data — How to leverage additional information.




How to Build a Hyperspectral Microscope ()&=,

488 nm laser ND

[
d

spatial -

filter notch

video galvo — N filter
camera mirror /‘

dichroic

1
neutral spectrometer
beamsplitter

high resolution EMCCD Array

XYZ Positioning
system Adapted from Sinclair, M. B., et al. (2006). "Hyperspectral
confocal microscope." Applied Optics 45(24): 6283-6291.

Schematic diagram of Sandia’s hyperspectral confocal microscope

Hyperspectral Confocal Microscope =
Confocal Microscope + Spectrometer




Hyperspectral STED Microscope — [ME.

= Stimulated Emission Depletion (STED) is a super-resolution
microscopy technique

= Super-resolution microscopy won the 2014 Nobel prize in chemistry

= STED dramatically improves the spatial resolution (~¥30 nm
typical, <3 nm reported)

Confocal |

n /7

—

= Building world’s first hyperspectral STED microscope

= Patented by Jeri Timlin (8631) and Jesse Aaron
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Stimulated Emission Details )=,

Basic Principle of Stimulated Emission

Bﬁﬁmm During After
emission Ao
ST T, == ’W
AN
Absorptidn Stimulated Emission hy
5 T r.plps

https://en.wikipedia.org/wiki/File:STED_Jablonski.jpg

By V1adis1av - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=3983414

Generating the STED Point Spread Function (PSF)

g Excitation Depletion Effective\

200 nm 20 nm
& %

Neither beam PSF can exceed the diffraction limit, but the effective PSF can!




Building a Hyperspectral STED ) e

Excitation Optics
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Building a Hyperspectral STED =

Detection Optics

Andor iXon Ultra
EMCCD Camera

g Excitation Depletion

mmmm AlexaFluor 633
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Design Considerations

= Tunable wavelength for both
excitation and depletion beams

= Can be optimized for any STED
fluorophore with exchange of a
single optic (the dichroic)
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= Why hyperspectral? — What is hyperspectral imaging and
what are its benefits?

= Sandia’s hyperspectral microscopes — What are the systems |
typically work with?

= Analyzing hyperspectral data — What can
multivariate curve resolution (MCR) do for you?

= Improving MCR — Ongoing work to improve its capabilities.

= Trilinear Data — How to leverage additional information.




Multivariate Curve Resolution (MCR)

Chemometric factor analysis (such as MCR) extracts:
1) the spectra of the pure compounds &
2) their relative concentrations at each position.

Spectra
MCR §0.12
> %008
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Common Spectral Image Analysis Methods @ o

t = Univariate methods
9 > - Band integration, peak height, peak positions
> o i
© S - Isolated bands, no spectral interference
:|
€| =| " Multivariate methods
3 g = Unmixing methods
o ; - Least squares prediction based (e.g. classical least squares)
o £ -> A priori knowledge
_é’, %_ - Spectral shapes or pure image pixels
Q S
2 § = Factor Analysis methods
£ S - Principle components analysis (PCA) , Factor analysis,
5 = SIMPLISMA, self modeling curve resolution, multivariate
@ = curve resolution (MCR)
S| £ - Data defines
§ = —~>No a priori knowledge of spectral shapes/pure pixels
—->Need number of components
v - Constraints to narrow solution space




Why Aren’t the Spectra Known? @&

“Acridine Orange is a cell-permeant nucleic acid binding dye that emits green
fluorescence when bound to dsDNA and red fluorescence when bound to
ssDNA or RNA.” - ThermoFisher Scientific

Reference Spectra MCR Pure Component Spectra
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Reference spectra are not always available, and when available do not
always capture the complete spectral properties.
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Broadly Applicable UL

Works for any data satisfying the linear additive model:

D=CST+E

= Fluorescence spectroscopy
= Raman spectroscopy
= Mass spectroscopy

= |nfrared satellite imagery




MCR Assumptions ) .

1. Assumes a linear additive model:

D=CST+E

D = Data matrix nPoints X nWavelengths

C = Concentrations matrix ~ nPoints X nComponents
ST = (Spectra matrix)™2"srose  nComponents X nWavelenths

E = Noise (error) matrix nPoints X nWavelengths
2. The # of spectral components is known or can be estimated

19




Determining the # of Spectra ) .

Scree Plot
Scree plots allow
10'2 rough eStimation
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Basic Operation
D=CS"+E

= Djs known

= |f C were known, could solve for S
= |f S were known, could solve for C

= Constrained Alternating Least Squares

Provide an initial guess for S (or C)

Solve for C based upon current S guess, enforcing constraints
Solve for S based upon current C guess, enforcing constraints
Repeat steps 2 & 3

vin & W PE

Iterations converge on solution

21
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Advantages of MCR UL

= Extracts underlying relationships from complex data
sets

= No a priori knowledge needed
= Signals below the noise level can be detected!

= Physically meaningful constraints
= Negative concentrations not allowed

= Negative intensities not allowed

= Efficient algorithms developed at Sandia

= Keenan, M. R. and P. G. Kotula (2003). Apparatus and system for
multivariate spectral analysis, Google Patents.

22




No A Priori Spectra Required =

Spectra Plot Hyperspectral Confocal
' | | | ?5, | ——— | Fluorescence Microscopy
D .
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| 1L — Chlarophyll A

Ly - 1 Even when
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L AN AU I 1 halve guesses,

MCR determines
the spectrum of
chlorophyll B and
localizes where it is
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Why MCR vs. PCA? UL

" Three related factor analysis methods
= Multivariate Curve Resolution (MCR)
= Principal Component Analysis (PCA)
= |ndependent Component Analysis (ICA)

= All resolve the data into pure spectral components
and concentrations without a priori information

= Different Constraints

= MCR — Physical and Chemical Constraints (e.g. no negative
concentrations, no negative intensities)

= PCA - Linearly uncorrelated
= |CA — Statistically Independent

24




Why MCR vs. PCA? ) e
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= PCA

= Recovers 4 spectral
components when only 3 are
present

= Eigenvectors do not look like
normal spectra — major
negative portions

= MCR

= Recovers the correct number
of components

= Components generally
correspond to actual spectra

25
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= Why hyperspectral? — What is hyperspectral imaging and
what are its benefits?

= Sandia’s hyperspectral microscopes — What are the systems |
typically work with?

= Analyzing hyperspectral data — What can multivariate curve
resolution (MCR) do for you?

= Improving MCR — Ongoing work to improve its
capabilities.

= Trilinear Data — How to leverage additional information.




The Art of MCR
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While MCR can provide excellent
results, it is currently more of an
art than a science.

A skilled user will obtain better
spectra from MCR, particularly for
weaker spectral components.

Relative amounts:

Chlorophyll B: 3.7
Chlorophyll A: 2.2
Phycobilosomes: 1.0

27




7| Netora

Multitude of Results e
Pure Spectra MCR Spectra (100 different runs)
0.25 - - - - 0.25 , , , -
— Alexa 488 Alexa 488
— Acridine Orange — Acridine Orange
02Ft — Cell Mask Orange | | 02F — Cell Mask Orange | |
20.15 20.15
= 017 = 0.1
0.05f . 0.05f
500 550 600 650 700 500 550 600 650 700

Wavelength (nm) Wavelength (nm)

MCR results for 100 runs on a simulated data set for a 100 x 100 pixel hyperspectral
image averaging ~55000 counts for each spectrum initialized with random spectra.

Why multiple results? Two possibilities:
= Failure to converge —trapped in a local minimum

= Rotational ambiguity — results mathematically equally good
28




Rotational Ambiguity ) &,

Also known as the rotation problem:

= Construct an invertible transformation matrix M. to
operate on the matrices C and S.

D = CS" = (CM.1) (MST)

" The resulting matrices (CM.* and M.ST) are an
alternate solution with identical residuals

Constraints may reduce or eliminate rotational
ambiguity.

29




Data Size (O}

Desired Results
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Working with more data provides better results




Computational Requirements .

Sandia’s MCR algorithm
runs ~50 times faster

0 —crais than competing codel
-  |l=—Sanda MCR released in 2015.
c
2 100} 3
© : . .
o { Competing code’ is
5 i widely used — cited 46
O . . .
o 07 1 timesin 2 years.
£
1) Jaumot, J. et al., "MCR-ALS GUI 2.0: new
1072 features and applications." Chemometrics
10° 10* 10° 10®  and Intelligent Laboratory Systems 140
# of Spectra (2015): 1-12.

Computational time is on a high-end PC

31




Ongoing Work — Improved Weighting N

Laboratories
Weighted for
Without Weighting Poisson & Gaussian Noise
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Jones, H. D. T, et al. (2008). "Weighting hyperspectral image data for improved multivariate curve resolution results." Journal of Chemometrics 22(9-10): 482-490.

Proper weighting makes a major difference!

Working on improving the weighting to correctly account for all sources of
noise, including the pre-processing steps. 2
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= Why hyperspectral? — What is hyperspectral imaging and
what are its benefits?

= Sandia’s hyperspectral microscopes — What are the systems |
typically work with?
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Bilinear vs. Trilinear Data )2,
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Bilinear Data — Each
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vectors.

Trilinear Data —
°Y;°Z Each component in
the data tensor can
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e = product of three
= i + i +eee i vectors.
X 4 X

Adapted from SAND2014-1825
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Hyperspectral Data Cube = Bilinear

While hyperspectral data cubes are 3-
dimensional, typically the data is only
bilinear, not trilinear. Prior to processing
with MCR, the data must be reshaped.

Spatial, y

NN
Qoapiafunia)iafiafiafoujiugiuf

Reshapg
S—

Adapted from Wu, Zhaojun, et al. Journal of Electronic Imagirliiq 25.1 (2016): 013037-013037.
In order to be trilinear, for an individual

component, the cross sections at different
y positions (yellow and green lines) would
need to be identical.




Examples of Trilinear Data

= Hyperspectral fluorescence lifetime
= Spatial position

= Wavelength
= Lifetime
= Gas Chromatography

= Elution Time
= Mass spectrum

= Multiple possibilities (sample number, run temperature)




Analyzing Trilinear Data ) =,

= MCR can be applied to trilinear data, but better
methods exist

= Trilinear data can always be reshaped to generate a
bilinear data set.

= Doing so forfeits one of the great advantages of trilinear

data. Trilinear analysis eliminates the rotational ambiguity
problem common to bilinear data.

" Trilinear methods exist
= Parafac, Tucker3 algorithms are examples

= For trilinear data analysis, talk to Mark van Benthem
(1814)

37




Summary UL
= Hyperspectral microscopy and MCR are valuable tools

= Hyperspectral STED will provide super-resolution
capability
" |[mprovements to MCR will:

= Make MCR less of an art
" Improve estimation of the weaker components
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