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Outline

 Why hyperspectral? – What is hyperspectral 
imaging and what are its benefits?

 Sandia’s hyperspectral microscopes – What are the systems I 
typically work with? 

 Analyzing hyperspectral data – What can multivariate curve 
resolution (MCR) do for you? 

 Improving MCR – Ongoing work to improve its capabilities. 

 Trilinear Data – How to leverage additional information. 
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Introduction to Hyperspectral Imaging
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Smith, R. B. (2012) Introduction to Hyperspectral Imaging. Microimages
http://www.microimages.com/documentation/Tutorials/hyprspec.pdf



Image of the endogenous 
fluorescence from S. 
dimorphous (algae) 
undergoing parasitic infection 
by A. protococcarum.  

 Approximate cell borders 
are hand-drawn in white. 

 Two of the cells contain 
parasitic vacuoles. 

 Can you spot the 
parasitic vacuoles? 
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Adapted from Collins, A. M., et al. (2014). "Host Cell Pigmentation in 
Scenedesmus dimorphus as a Beacon for Nascent Parasite Infection." 
Biotechnology and Bioengineering 111(9): 1748-1757.

Why Use Hyperspectral Imaging?

Conventional Fluorescence Image
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Collins, A. M., et al. (2014). 

 Parasitic vacuoles (white arrows) are easily spotted using the 
combined carotenoid and autofluorescence signal. 

 Spotting them is nearly impossible when examining all the 
fluorescence together as the chlorophyll signal dominates. 

 Hyperspectral imaging reveals otherwise hidden features. 

Why Use Hyperspectral Imaging?

Bright Field
Carotenoid & AF Chlorophyll

Fluorescence



Why multispectral is not enough
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Haaland, D. M., et al. (2007). "Hyperspectral confocal fluorescence imaging of 
cells" Next-Generation Spectroscopic Technologies 6765: 76509-76509.

Left) Fluorescence spectra for two Syto 13 and two autofluorescence
emission components. Right) Relative concentration of the components’ 
spatial distributions in mouse macrophage cells (Raw 264.7). 

 Multispectral imaging (e.g. filter-based microscopes) would only 
distinguish Syto 13 from autofluorescence – two components. 

 Hyperspectral imaging can distinguish nearly identical spectra. 



Hyperspectral Imaging Applications

 Fluorescence or Raman microscopy – cell signaling

 Agriculture (satellite or drone-based) – monitoring crop 
locations (poppy fields), crop health, disease outbreak

 Chemical detection – Detect airborne chemical hazards at 
ppm levels up to 5 km away

 Mineralogy – disturbed ground indicative of improvised 
explosive devices
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How to Build a Hyperspectral Microscope
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Schematic diagram of Sandia’s hyperspectral confocal microscope

Hyperspectral Confocal Microscope =  
Confocal Microscope + Spectrometer

Adapted from Sinclair, M. B., et al. (2006). "Hyperspectral 
confocal microscope." Applied Optics 45(24): 6283-6291.



Hyperspectral STED Microscope

 Stimulated Emission Depletion (STED) is a super-resolution 
microscopy technique
 Super-resolution microscopy won the 2014 Nobel prize in chemistry

 STED dramatically improves the spatial resolution (~30 nm 
typical, <3 nm reported)

 Building world’s first hyperspectral STED microscope
 Patented by Jeri Timlin (8631) and Jesse Aaron
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Stimulated Emission Details
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Basic Principle of Stimulated Emission

https://en.wikipedia.org/wiki/File:STED_Jablonski.jpg

+ =
200 nm

20 nm

Excitation Depletion Effective

Generating the STED Point Spread Function (PSF)

Neither beam PSF can exceed the diffraction limit, but the effective PSF can!

By V1adis1av - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=3983414



Building a Hyperspectral STED
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Excitation Optics



Building a Hyperspectral STED
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Detection Optics

Design Considerations

 Tunable wavelength for both 
excitation and depletion beams

 Can be optimized for any STED 
fluorophore with exchange of a 
single optic (the dichroic)
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Chemometric factor analysis (such as MCR) extracts:

1) the spectra of the pure compounds &

2) their relative concentrations at each position.
Spectra

Concentrations

Multivariate Curve Resolution (MCR)

MCR



 Univariate methods
Band integration, peak height, peak positions
 Isolated bands, no spectral interference

 Multivariate methods
 Unmixing methods

Least squares prediction based (e.g. classical least squares)
A priori knowledge

Spectral shapes or pure image pixels

 Factor Analysis methods
Principle components analysis (PCA) , Factor analysis, 

SIMPLISMA, self modeling curve resolution, multivariate 
curve resolution (MCR)

Data defines
No a priori knowledge of spectral shapes/pure pixels

Need number of components
Constraints to narrow solution space
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Why Aren’t the Spectra Known?
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“Acridine Orange is a cell-permeant nucleic acid binding dye that emits green 
fluorescence when bound to dsDNA and red fluorescence when bound to 
ssDNA or RNA.” - ThermoFisher Scientific

Reference spectra are not always available, and when available do not 
always capture the complete spectral properties. 



Broadly Applicable
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Works for any data satisfying the linear additive model:

D = CST + E

 Fluorescence spectroscopy

 Raman spectroscopy

 Mass spectroscopy

 Infrared satellite imagery



MCR Assumptions

1. Assumes a linear additive model:

D = CST + E
D = Data matrix nPoints X nWavelengths

C = Concentrations matrix nPoints X nComponents

ST = (Spectra matrix)Transpose nComponents X nWavelenths

E = Noise (error) matrix nPoints X nWavelengths

2. The # of spectral components is known or can be estimated

19



Determining the # of Spectra
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Scree plots allow 
rough estimation 
of the number of 
spectra. 

Elbow (transition 
to flat) in scree 
and eigenvectors 
that look like 
noise indicate no 
more 
components.

Elbow
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Basic Operation

D = CST + E
 D is known

 If C were known, could solve for S

 If S were known, could solve for C

 Constrained Alternating Least Squares
1. Provide an initial guess for S (or C)

2. Solve for C based upon current S guess, enforcing constraints

3. Solve for S based upon current C guess, enforcing constraints

4. Repeat steps 2 & 3

5. Iterations converge on solution



Advantages of MCR

 Extracts underlying relationships from complex data 
sets

 No a priori knowledge needed

 Signals below the noise level can be detected!

 Physically meaningful constraints

 Negative concentrations not allowed

 Negative intensities not allowed

 Efficient algorithms developed at Sandia
 Keenan, M. R. and P. G. Kotula (2003). Apparatus and system for 

multivariate spectral analysis, Google Patents.
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No A Priori Spectra Required
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Even when 
initialized with 
naïve guesses, 

MCR determines 
the spectrum of 
chlorophyll B and 
localizes where it is 
present.

Hyperspectral Confocal 
Fluorescence Microscopy 
of R61 Acaryochloris
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Why MCR vs. PCA?
 Three related factor analysis methods

 Multivariate Curve Resolution (MCR)

 Principal Component Analysis (PCA)

 Independent Component Analysis (ICA)

 All resolve the data into pure spectral components 
and concentrations without a priori information

 Different Constraints

 MCR – Physical and Chemical Constraints (e.g. no negative 
concentrations, no negative intensities)

 PCA – Linearly uncorrelated

 ICA – Statistically Independent
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Why MCR vs. PCA?

PCA

MCR

 PCA

 Recovers 4 spectral 
components when only 3 are 
present

 Eigenvectors do not look like 
normal spectra – major 
negative portions

 MCR

 Recovers the correct number 
of components

 Components generally 
correspond to actual spectra
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The Art of MCR
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Blind
MCR

Skilled
User

While MCR can provide excellent 
results, it is currently more of an 
art than a science. 

A skilled user will obtain better 
spectra from MCR, particularly for 
weaker spectral components. 

Relative amounts:

Chlorophyll B: 3.7

Chlorophyll A: 2.2

Phycobilosomes: 1.0
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Pure Spectra MCR Spectra (100 different runs)

MCR results for 100 runs on a simulated data set for a 100 x 100 pixel hyperspectral
image averaging ~55000 counts for each spectrum initialized with random spectra.

Why multiple results? Two possibilities:

 Failure to converge – trapped in a local minimum

 Rotational ambiguity – results mathematically equally good

Multitude of Results
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Also known as the rotation problem:
 Construct an invertible transformation matrix Mi to 

operate on the matrices C and S. 

D = CST = (CMi
-1) (MiS

T)
 The resulting matrices (CMi

-1 and MiS
T) are an 

alternate solution with identical residuals

Constraints may reduce or eliminate rotational 
ambiguity. 

Rotational Ambiguity



Data Size

Working with more data provides better results

32k spectra

128k spectra

2k spectra

8k spectra

Desired Results
653k spectra

Relative amounts:

Chlorophyll B: 3.7

Chlorophyll A: 2.2

Phycobilosomes: 1.0
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Computational Requirements
Sandia’s MCR algorithm 
runs ~50 times faster 
than competing code1

released in 2015. 

Competing code1 is 
widely used – cited 46 
times in 2 years. 

1) Jaumot, J. et al., "MCR-ALS GUI 2.0: new 
features and applications." Chemometrics
and Intelligent Laboratory Systems 140 
(2015): 1-12.

Computational time is on a high-end PC



Ongoing Work – Improved Weighting
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Jones, H. D. T., et al. (2008). "Weighting hyperspectral image data for improved multivariate curve resolution results." Journal of Chemometrics 22(9-10): 482-490.

Without Weighting

Weighted for 
Poisson & Gaussian Noise

Proper weighting makes a major difference!

Working on improving the weighting to correctly account for all sources of
noise, including the pre-processing steps.
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Bilinear vs. Trilinear Data

Bilinear Data – Each 
component in the 
data matrix can be 
expressed as the 
product of two 
vectors. 

Trilinear Data –
Each component in 
the data tensor can 
be expressed as the 
product of three 
vectors. 

Adapted from SAND2014-1825
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Hyperspectral Data Cube = Bilinear 

While hyperspectral data cubes are 3-
dimensional, typically the data is only 
bilinear, not trilinear. Prior to processing 
with MCR, the data must be reshaped. 

In order to be trilinear, for an individual 
component, the cross sections at different 
y positions (yellow and green lines) would 
need to be identical. 

Adapted from Wu, Zhaojun, et al. Journal of Electronic Imaging 25.1 (2016): 013037-013037.
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Examples of Trilinear Data
 Hyperspectral fluorescence lifetime

 Spatial position

 Wavelength

 Lifetime

 Gas Chromatography

 Elution Time

 Mass spectrum

 Multiple possibilities (sample number, run temperature)
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Analyzing Trilinear Data
 MCR can be applied to trilinear data, but better 

methods exist

 Trilinear data can always be reshaped to generate a 
bilinear data set. 

 Doing so forfeits one of the great advantages of trilinear 
data. Trilinear analysis eliminates the rotational ambiguity 
problem common to bilinear data. 

 Trilinear methods exist

 Parafac, Tucker3 algorithms are examples

 For trilinear data analysis, talk to Mark van Benthem 
(1814)
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 Hyperspectral microscopy and MCR are valuable tools

 Hyperspectral STED will provide super-resolution 
capability

 Improvements to MCR will:

 Make MCR less of an art

 Improve estimation of the weaker components


