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Overview Beyond linear response
TDDFT is a promising capability for ab initio | Can we isochorically heat beryllium in TDDFT?
linear response calculations in WDM | »
- Dynamic structure factor [1]
- Optical conductivity
- Stopping power* [2]
* Technically beyond linear response, but existing adiabatic functionals work well
Using XRTS calculations as a motivator, we will:
- See what happens beyond linear response (naively)
- Point to deficiencies in TDDFT, as implemented
- Sketch out a framework for ab initio x-ray heating
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Linear response in real-time Energy couples
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vs [p) (T, 1) = Veat (T, 1) +vg [p] (T, 1) + vae |p] (1, 1) X-ray directly drives plasmons, but TDDFT (as
Build density from TD orbitals + fixed Mermin weights implemented) is missing physics:
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p(r,t) = > frw(T)|nx(r, )] - Kohn-Sham occupancies don’t know how to change
op(q w)n’k LS ool —quw)] | No direct core excitations
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Methods consistent with each other & experiment [x] | cjected high energy electrons cannot drive plasmons
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T ‘ e State-of-the-art Kinetics Real-time TDDFT
m ' - Multi-configuration atoms - Single configuration atoms
- Electrons equilibrate - Electrons can’t equilibrate
instantaneously on their own
. Lo - Heuristic treatment of - Consistent treatment of
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_Ei ” L - Partition Hamiltonian into low and high energy sectors:
g N | 1 T HKS(Ben+) +Hur + HKS,HE(Ben+)
% KS-DFT Hamiltonian for  Quasi-free Coupling at fixed
? ,*T = RTTODFT (LDA) each charge config. electrons total charge
e /| LR-TDDFT (LDA) .
Pesee, . ;i‘;,zﬁﬂzfﬁp’*) e - Integrate out high energy sector / create self-energy
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Amblent crystalllne SOdlum Art is in creating an efficient approximation
Sperling, et al., PRL 2015 [3] Lee, et al., PRL 2009 [4 Another self-energy couples charge configs.
brring, etdl, Fak 28 ] 20 , 4 - Solve Kadanoff-Baym equations with x-ray drive and
\ amblent initial condition
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30'6' E Adlabatlc TDDFT Hamiltonian in Self-energy approximation bootstraps in
%’ %‘) 1.0 each charge sector non-adiabatic effects
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