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Methods consistent with each other & experiment [x]

Beyond linear response

To describe non-LTE properties, we need to go 
beyond adiabatic TDDFT

* Technically beyond linear response, but existing adiabatic functionals work well

⁃ Dynamic structure factor [1]
⁃ Optical conductivity
⁃ Stopping power* [2]

⁃ See what happens beyond linear response (naively) 
⁃ Point to deficiencies in TDDFT, as implemented
⁃ Sketch out a framework for ab initio x-ray heating

Can we isochorically heat beryllium in TDDFT?
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⁃ Multi-configuration atoms
⁃ Electrons equilibrate 

instantaneously
⁃ Heuristic treatment of 

coupling to environment

⁃ Single configuration atoms   
⁃ Electrons can’t equilibrate 

on their own
⁃ Consistent treatment of 

coupling to environment

State-of-the-art Kinetics Real-time TDDFT

Quasi-free
electrons

- Integrate out high energy sector / create self-energy

X-ray directly drives plasmons, but TDDFT (as 
implemented) is missing physics:

90 deg.24 deg.

1.5 keV

Energy couples 
in through 
plasmons

⁃ Kohn-Sham occupancies don’t know how to change 
⁃ No direct core excitations
⁃ No Auger processes 
⁃ Ejected high energy electrons cannot drive plasmons

How can we proceed?

Time-evolve orbitals from Mermin Kohn-Sham DFT

Weak perturbation looks like probe x-ray envelope

Build density from TD orbitals + fixed Mermin weights
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- Partition Hamiltonian into low and high energy sectors:

KS-DFT Hamiltonian for
each charge config.

Coupling at fixed
total charge

HKS(Be
n+) +HHE +HKS,HE(Be

n+)

G(Ben+) = GKS(Be
n+) + GKS(Be

n+)⌃(Ben+)G(Ben+)
Art is in creating an efficient approximation

Another self-energy couples charge configs.

- Solve Kadanoff-Baym equations with x-ray drive and 
ambient initial condition 

Self-energy approximation bootstraps in
non-adiabatic effects
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Adiabatic TDDFT Hamiltonian in
each charge sector

Linear response in real-time

Using XRTS calculations as a motivator, we will:

TDDFT is a promising capability for ab initio 
linear response calculations in WDM

Overview
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