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Application Driver

Semiconductor electrical transport simulation

Scaled semiconductor drift-diffusion equations

Poisson equation ∇ · (λ2∇φ) + (p− n + C) = 0

Electron continuity equation
∂n

∂t
−∇ · Jn + R(φ, n, p) = 0

Hole continuity equation
∂p

∂t
+∇ · Jp + R(φ, n, p) = 0

Electric field E = −∇φ
Electron current density Jn = µnEn +Dn∇n

Hole current density Jp = µpEn−Dp∇p
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↑ ↑
drift diffusion

Require a numerical scheme that is accurate and stable in the strong drift regime
(Dn � µnE, Dp � µpE)

4/6/2017 3



Application Driver

Semiconductor electrical transport simulation

Scaled semiconductor drift-diffusion equations

Poisson equation ∇ · (λ2∇φ) + (p− n + C) = 0

Electron continuity equation
∂n

∂t
−∇ · Jn + R(φ, n, p) = 0

Hole continuity equation
∂p

∂t
+∇ · Jp + R(φ, n, p) = 0

Electric field E = −∇φ
Electron current density Jn = µnEn +Dn∇n

Hole current density Jp = µpEn−Dp∇p

source	
   drain	
  

gate	
  

substrate	
  

	
  Nd 	
  Nd 

	
  Na 

	
  Ωox 

	
  Ωsi 

Vg	
  =	
  2	
  V	
  

Vd	
  =	
  1	
  V	
  

Vs	
  =	
  0	
  

Vsub	
  =	
  0	
  

↑ ↑
drift diffusion

Require a numerical scheme that is accurate and stable in the strong drift regime
(Dn � µnE, Dp � µpE)

4/6/2017 4



Application Driver

Semiconductor electrical transport simulation

Scaled semiconductor drift-diffusion equations

Poisson equation ∇ · (λ2∇φ) + (p− n + C) = 0

Electron continuity equation
∂n

∂t
−∇ · Jn + R(φ, n, p) = 0

Hole continuity equation
∂p

∂t
+∇ · Jp + R(φ, n, p) = 0

Electric field E = −∇φ
Electron current density Jn = µnEn +Dn∇n

Hole current density Jp = µpEn−Dp∇p

source	
   drain	
  

gate	
  

substrate	
  

	
  Nd 	
  Nd 

	
  Na 

	
  Ωox 

	
  Ωsi 

Vg	
  =	
  2	
  V	
  

Vd	
  =	
  1	
  V	
  

Vs	
  =	
  0	
  

Vsub	
  =	
  0	
  

↑ ↑
drift diffusion

Require a numerical scheme that is accurate and stable in the strong drift regime
(Dn � µnE, Dp � µpE)

4/6/2017 5



Numerical Discretization
Control Volume Finite Element Method (CVFEM)

Electron continuity equation

∂n

∂t
−∇ · J + R = 0

J = un +D∇n
u = µE

Finite element approximation of the
electron density
nh(x, t) =

X
j

nj(t)Nj(x)

Integrate over control volume and apply
the divergence theorem
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−∇ · J + R = 0

J = un +D∇n
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Ci

vi

Finite element approximation of the
electron density
nh(x, t) =

X
j

nj(t)Nj(x)

Integrate over control volume and apply
the divergence theorem

Z
Ci

∂nh

∂t
dV−

Z
∂Ci

J(nh)·~n dS+

Z
Ci

R(nh) dV = 0

4/6/2017 7



Numerical Discretization
Control Volume Finite Element Method (CVFEM)

Electron continuity equation

∂n

∂t
−∇ · J + R = 0

J = un +D∇n
u = µE

Ci

vi

Finite element approximation of the
electron density
nh(x, t) =

X
j

nj(t)Nj(x)

Integrate over control volume and apply
the divergence theorem

Z
Ci

∂nh

∂t
dV−

Z
∂Ci

J(nh)·~n dS+

Z
Ci

R(nh) dV = 0

J(nh) =
X
j

nj(t) (µENj +D∇Nj)

Nodal approximation for J(nh) can lead to
instabilities in strong drift regime.
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Numerical Discretization
Control Volume Finite Element Method (CVFEM)

Electron continuity equation

∂n

∂t
−∇ · J + R = 0

J = un +D∇n
u = µE
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electron density
nh(x, t) =

X
j

nj(t)Nj(x)

Integrate over control volume and apply
the divergence theorem

Z
Ci

∂nh

∂t
dV−

Z
∂Ci

J(nh)·~n dS+

Z
Ci

R(nh) dV = 0

J(nh) =
X
j

nj(t) (µENj +D∇Nj)

Want a stabilized approximation for J that
includes information on drift.
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Scharfetter-Gummel Upwinding

On edge eij solve 1-d boundary value problem for
constant Jij

dJij

ds
= 0; Jij = µEijn(s) +D

dn(s)

ds

n(0) = ni and n(hij) = nj

Jij =
aijD

hij
(nj (coth(aij) + 1)− ni (coth(aij)− 1))

where aij =
hijEijµ

2D
, Eij = − (ψj−ψi)

hij

Ci

vi

vj

Jij

On structured grids, Jij is a good
estimate of J · ~n on ∂Cij

Z
∂Ci

Jn · ~n dS ≈
X

∂Cij∈∂Ci

Jij |∂Cij |

D. L. Scharfetter and H. K Gummel, Large-signal analysis of a silicon read diode oscillator, IEEE Transactions on
Electron Devices 16, 64-77, 1969.
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Multi-dimensional S-G Upwinding

Idea: Use H(curl)-conforming finite elements to expand edge current density into
primary cell

Nodal space, GhD(Ω), and edge element space, ChD(Ω), belong to
an exact sequence

given Ni ∈ G
h
D(Ω), then∇Ni ∈ C

h
D(Ω)

∇Ni =
X

eij∈E(vi)

σij
−→
W ij , σij = ±1

In the limit carrier drift velocity µE = 0,

lim
µE→0

Jij =
D(nj − ni)

hij

JE =
X

eij∈E(Ω)

D(nj−ni)
−→
W ij =

X
vi∈V (Ω)

Dnj∇φj = J(n
h

)

Exponentially fitted current density

JE(x) =
X
eij

hijJij
−→
W ij(x)

JE

JE

vi

vj

vm

vp

Jij

Jmi

Jpm

Jjp

Ci

Z
eij

−→
W ij · trsdl = δ

rs
ij

P. Bochev, K. Peterson, X. Gao A new control-volume finite element method for the stable and accurate solution of
the drift-diffusion equations on general unstructured grids, CMAME, 254, pp. 126-145, 2013.
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Convergence on Structured Grids

Steady-state manufactured solution

−∇ · J +R = 0 in Ω
n = g on ΓD

n(x, y) = x3 − y2

µE = (− sinπ/6, cosπ/6)

CVFEM-SG FVM-SG
L2 error H1 error L2 error H1 error

Grid D = 1× 10−3

32 0.4373E-02 0.7620E-01 0.4364E-02 0.7572E-01
64 0.2108E-02 0.4954E-01 0.2107E-02 0.4937E-01

128 0.9870E-03 0.3089E-01 0.9870E-03 0.3084E-01
Rate 1.095 0.681 1.094 0.679
Grid D = 1× 10−5

32 0.4732E-02 0.7897E-01 0.4723E-02 0.7850E-01
64 0.2517E-02 0.5477E-01 0.2515E-02 0.5460E-01

128 0.1298E-02 0.3834E-01 0.1298E-02 0.3828E-01
Rate 0.955 0.514 0.955 0.514

CVFEM-SG control volume finite element method with multi-dimensional S-G upwinding
FVM-SG finite volume method with 1-d S-G upwinding
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Robust on Unstructured Grids

Manufactured linear solution

Grid CVFEM-SG FVM-SG Grid CVFEM-SG FVM-SG
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Charon

To solve coupled drift-diffusion equations CVFEM-SG has been implemented
in Sandia’s Charon code

Electrical transport simulation code for semiconductor devices, solving
PDE-based nonlinear equations

Built with Trilinos libraries (https://github.com/trilinos/Trilinos)
that provide

Framework and residual-based assembly (Panzer, Phalanx)
Linear and Nonlinear solvers (Belos, Nox, ML, etc)
Temporal and spatial discretization (Tempus, Intrepid, Shards)
Automatic differentiation (Sacado)
Advanced manycore performance portability (Kokkos)

Developers: Suzey Gao, Gary Hennigan, Larry Musson, Andy Huang
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PN Diode

PN Diode coupled drift-diffusion equations

∇ · (ε0εsi∇ψ) = −q(p− n +Nd −Na) in Ω

−∇ · Jn + R(ψ, n, p) = 0 in Ω

∇ · Jp + R(ψ, n, p) = 0 in Ω

R(ψ, n, p) =
np−n2

i
τp(n+ni)+τn(p+ni)

+(cnn + cpp)(np− n2
i )

PN Diode
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PN Diode
Mesh Dependence Study

hx = 0.01µm hx = 0.02µm hx = 0.05µm
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PN Diode
Strong Drift Case

Na = Nd = 1.0× 1018cm−3, Va = −1.5V
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SUPG−FEM
CVFEM−SG

FEM-SUPG solution develops undershoots and becomes negative in junction
region, while CVFEM-SG exhibits only minimal undershoots and values

remain positive.
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Multi-scale Stabilized CVFEM

Divide each element into 4 bilinear (Q1)
sub-elements

Define control volumes around each sub-cell
node

Compute 2nd order Jij at each macro
element edge

Use 2nd order H(curl) basis to evaluate JE
at control volume integration points

JE(nh) =
X

eij∈E(Ω)

hijJij
−→
W ij

K

K1

K2

K3

K4

Bochev, Peterson, Perego "A multi-scale control-volume finite element method for advection-diffusion
equations",IJNMF Vol. 77, Issue 11, pp. 641-667 (2015).
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Multi-scale Stabilized CVFEM
2nd Order Edge Current Density

Solve 1-d boundary value problem along a
compound edge for a linear J(s) = a+ bs

J(s) = µEsn(s) +D
dn

ds
n(0) = ni, n(hs/2) = nk and n(hs) = nj

Jik = J(hs/4) Jkj = J(3hs/4)

Jkj

Jik

ni

nk

nj

Edge current density

Jik = Φ(ni, nk) + γ(ni, nj , nk)

Jkj = Φ(nk, nj) + γ(ni, nj , nk)

Φ(ni, nk) = aD
h

(nk (coth(a) + 1)− ni (coth(a)− 1))

γ(ni, nj , nk) = D
h

(a coth(a)− 1)
“
ni(coth(a)− 1)− 2nk coth(a) + nj(coth(a) + 1)

”
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Multi-scale Stabilized CVFEM

Subedge fluxes are a sum of
Scharfetter-Gummel fluxes and a
higher-order correction term

High-order correction contributes an
anti-diffusive flux

In pure advection limit (D → 0) method
only modifies downstream segment

Jik = Φ(ni, nk) + γ(ni, nj , nk)

Jkj

Jik

ni

nk

nj

K

J04

J41

J78

J85

J36 J62

J07

J73

J48

J86

J15

J52
JE

For assembly, edge basis
functions are used only locally so
no global edge data structures
are required

JE(nh) =
X

eij∈E(Ω)

hijJij
−→
W ij
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Manufactured Solution

−∇ · J(n) = R in Ω

J(n) = (D∇n+ µEn) in Ω

n = g on Γ

n(x, y) = x3 − y2

µE = (− sinπ/6, cosπ/6)

CVFEM-MS CVFEM-SG FEM-SUPG
L2 error H1 error L2 error H1 error L2 error H1 error

Grid∗ ε = 1× 10−3

32 1.57e-3 6.05e-2 4.24e-3 7.48e-2 2.09e-4 3.61e-2
64 3.93e-4 2.89e-2 2.07e-3 4.91e-2 4.85e-5 1.80e-2
128 8.98e-5 1.24e-2 9.78e-4 3.07e-2 1.11e-5 9.02e-3
Rate 2.06 1.14 1.06 0.642 2.12 1.00
Grid ε = 1× 10−5

32 1.69e-3 6.60e-2 4.73e-3 7.90e-2 2.30e-4 3.61e-2
64 4.54e-4 3.45e-2 2.52e-3 5.48e-2 5.78e-5 1.80e-2
128 1.18e-4 1.76e-2 1.30e-3 3.83e-2 1.45e-5 9.02e-3
Rate 1.92 0.955 0.933 0.521 1.99 1.00
∗ For CVFEM-MS the size corresponds sub-elements rather than macro-elements.

4/6/2017 31



Skew Advection Test

−∇ · J(n) = R in Ω

J(n) = (D∇n+ µEn) in Ω

n = g on Γ

g =


0 on ΓL ∪ ΓT ∪ (ΓB ∩ {x ≤ 0.5})
1 on ΓR ∪ (ΓB ∩ {x > 0.5})

µE = (− sinπ/6, cosπ/6) D = 1.0× 10−5

CVFEM-MS CVFEM-SG SUPG

min = -0.0445 min = 0.00 min = -0.0459

max = 1.077 max = 1.004 max = 1.251
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Double Glazing Test

−∇ · J(n) = R in Ω

J(n) = (D∇n+ µEn) in Ω

n = g on Γ

D = 1.0× 10−5

g =


0 on ΓL ∪ ΓT ∪ (ΓB ∩ {x ≤ 0.5})
1 on ΓR ∪ (ΓB ∩ {x > 0.5})

µE =

„
2(2y − 1)(1− (2x− 1)2)
−2(2x− 1)(1− (2y − 1)2)

«
CVFEM-MS CVFEM-SG SUPG
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Conclusions

Stabilization using an edge-element lifting of edge current densities offers a
stable and robust method for solving drift-diffusion equations

Works on unstructured grids

Does not require heuristic stabilization parameters

Although not provably monotone, violations of solution bounds are less than for a
comparable scheme with SUPG stabilization

Can achieve 2nd-order convergence with multi-scale approach

Future work
Investigate modifications to achieve a monotone scheme
Implement 2nd-order scheme in Charon
More detailed comparison of methods for full drift-diffusion equations
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