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Simulations of ICF capsule implosions have reached a high
level of sophistication

3D HYDRA simulation of a high-foot ICF capsule implosion

056302-9 Clark et al. Phys. Plasmas 23, 056302 (2016)
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Simulations of NIF high-foot capsule implosions with lowered () reima

thermal conductivity are in better agreement with experiment

Applying a simple multiplier of one half to the DT
thermal conductivity seems to improve the agreement
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ICF capsule implosions traverse a broad region of phase
space, from condensed matter to WDM to ideal plasma

b Hot spot boundary —
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Capsule phase space trajectories courtesy of Dan Clark (LLNL)




We appeal to three different computational frameworks
for a wide-range description of hydrogen transport

= First-principles calculations with DFT-MD and
Kubo-Greenwood transport calculations
= No assumption of ionization level or electron distribution
= Bare proton potential — no pseudopotential issues
= Particularly well suited to warm dense matter
= Very high temperatures are computationally difficult — must resort to
extrapolations for converged quantities
= Quantum Lenard-Balescu calculations®

= Particularly well suited to the ideal plasma limit: weak coupling, small
angle scattering
= |ncludes electron diffraction and dynamic screening

= Does not include electron degeneracy — no Pauli blocking
= Assumes full ionization
* See Whitley, Scullard, Benedict, et al., Contrib. Plasma, Phys. 55, 192 (2015). s




We appeal to three different computational frameworks
for a wide-range description of hydrogen transport (cont.)

= Linear response theory in the Zubarev framework*
= Boltzmann collision operator
= Particularly well suited to the expanded, partially ionized plasma
= T-matrix scattering cross sections — strong and weak scattering
= Pauli blocking included
= Static screening lengths for ion and electron potentials are assumed
= |onization state provided by auxiliary models

* See H. Reinholz, R. Redmer, and S. Nagel, Phys. Rev. E 52, 5368 (1995)

All calculations and results in this talk are for pure hydrogen (H)




The CEA group demonstrated the viability of ab initio
thermal conductivity calculations for very dense hydrogen

week ending
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Ab Initio Determination of Thermal Conductivity of Dense Hydrogen Plasmas
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First-principles calculations of transport quantities are carried
out in the Kubo — Greenwood / Chester — Thellung formalism

=  For these dense conditions we abandon the pseudopotential
approach and use a bare proton (this forces high plane wave cutoff

energies)

= We calculate the full set of Onsager transport coefficients and
calculate the thermal conductivity directly (no Wiedemann-Franz law

assumptions)
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Larger boxes (more atoms) are necessary to converge the
degenerate limit

1024 H atoms
0.0208 A’%/atom
0.14 ag? /atom

T=10eV

80 g/cc H
or

200 g/cc DT

P =13 Gbar




The transport properties are also difficult to converge in the
high temperature limit, particularly the thermal conductivity
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We extrapolate to infinite bands through the assumption
of a power law scaling of the dipole matrix elements

Desjarlais, Scullard, Benedict, Whitley, and Redmer, Phys. Rev. E 95, 033203 (2017)
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The electrical conductivities from the Kubo-Greenwood
calculations agree well with our quantum Lenard-Balescu results
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Residual differences are due to small degeneracy effects included in the DFT
but not the QLB. The sum rule on o(®) is well satisfied.
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The thermal conductivities from the Kubo-Greenwood calculations (=)
do not agree with our quantum Lenard-Balescu results
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Density functional theory provides an accurate description  (g) o
of the electrical conductivity in the non-degenerate limit,
but only partially captures the thermal transport

No momentum transport for e-e
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Explicit e-e collisions,
missing from DFT

See: Desjarlais, Scullard, Benedict, Whitley, and Redmer, Phys. Rev. E 95, 033203 (2017)
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The thermal conductivities from the Kubo-Greenwood calculations A Vool

with an e-e correction (®) agree with our quantum Lenard-Balescu results
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The red points show the agreement when an explicit e-e scattering correction, calculated
in the Zubarev formalism (T-matrix, Boltzmann collision operator) is added to the thermal.

Small differences due to the treatment of degeneracy remain 14




We build a wide-range model with a suite of semi-classical
algorithms tuned to the results of our calculations

= Lee-More-Desjarlais algorithms*
= Non-ideal Saha ionization model
= Electron-ion and electron-neutral scattering

= Degeneracy dependent reduction factors for electron-electron
scattering
= Wide-range Coulomb logarithm model
= Depends on I'; in the degenerate limit

“ Includes b,,c, bing for the classical or quantum minimum impact
parameter in the plasma limit

* Includes b, tuned to capture effects of dynamic screening

= Several additional minor tuning parameters

* MPD, Contrib. Plasma Phys. 41, 267 (2001) 15
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The plasma literature suggests a variety of choices for
the minimum impact parameter in the quantum limit
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We found optimum choices of b, ,,and b

minQ
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The thermal conductivity is equally well fit with the same
parameters
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Dynamic screening has a greater effect in reducing )
the thermal conductivity, pushing L below the Spitzer limit
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The model accurately represents the QLB electrical
conductivity results over many decadesof pand T
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The model accurately represents the QLB thermal
conductivity results over many decadesof pand T
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These QLB results are lower than the current LLNL thermal conductivity model by about 15% 21




The model is tuned to our DFT Kubo-Greenwood
electrical conductivity calculations in the degenerate limit
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The model is tuned to our DFT Kubo-Greenwood
thermal conductivity calculations in the degenerate limit
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We accurately fit DFT-KG electrical conductivities
calculated at higher density in the non-degenerate limit
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The DFT-KG thermal conductivities in the non-degenerate
limit are missing the explicit e-e scattering contribution
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The wide-range model is in good agreement with Zubarev
electrical conductivity calculations for hot expanded plasmas
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The wide-range model is in good agreement with Zubarev
thermal conductivity calculations for hot expanded plasmas
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We will revisit the Zubarev calculations with static screening lengths matched to dynamic screening 27




Summary L ::m

= Comparisons between state-of-the-art 3D simulations and
data from NIF experiments are in better agreement when the
current model for thermal conductivity is reduced

= We have combined results from 3 different calculational
frameworks to tune a wide-range model for the electrical and
thermal conductivity of hydrogen emphasizing ICF conditions

= The model accurately captures the results of the calculations,
particularly in the region of the hot-spot boundary where
sensitivity is greatest, and provides for a 15% lower thermal
conductivity

28




