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Simulations of ICF capsule implosions have reached a high
level of sophistication
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3D HYDRA simulation of a high-foot ICF capsule implosion

Dan Clark, et al.,  Phys Plasmas 23, 056302 (2016) 



Simulations of NIF high-foot capsule implosions with lowered
thermal conductivity are in better agreement with experiment

3Slide courtesy of Dan Clark (LLNL)Slide courtesy of Dan Clark (LLNL)



ICF capsule implosions traverse a broad region of phase
space, from condensed matter to WDM to ideal plasma
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Capsule phase space trajectories courtesy of Dan Clark (LLNL) 

Hot spot boundary –
region of greatest yield 
sensitivity to thermal
conductivity (Steve Hahn)



We appeal to three different computational frameworks
for a wide-range description of hydrogen transport

 First-principles calculations with DFT-MD and 
Kubo-Greenwood transport calculations
 No assumption of ionization level or electron distribution

 Bare proton potential – no pseudopotential issues

 Particularly well suited to warm dense matter

 Very high temperatures are computationally difficult – must resort to 
extrapolations for converged quantities

 Quantum Lenard-Balescu calculations*
 Particularly well suited to the ideal plasma limit: weak coupling, small 

angle scattering

 Includes electron diffraction and dynamic screening

 Does not include electron degeneracy – no Pauli blocking

 Assumes full ionization

5* See Whitley, Scullard, Benedict, et al., Contrib. Plasma, Phys. 55, 192 (2015). 



We appeal to three different computational frameworks
for a wide-range description of hydrogen transport (cont.)

 Linear response theory in the Zubarev framework*
 Boltzmann collision operator

 Particularly well suited to the expanded, partially ionized plasma

 T-matrix scattering cross sections – strong and weak scattering

 Pauli blocking included

 Static screening lengths for ion and electron potentials are assumed

 Ionization state provided by auxiliary models
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All calculations and results in this talk are for pure hydrogen (H)

* See H. Reinholz, R. Redmer, and S. Nagel, Phys. Rev. E 52, 5368 (1995) 



The CEA group demonstrated the viability of ab initio 
thermal conductivity calculations for very dense hydrogen
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First-principles calculations of transport quantities are carried
out in the Kubo – Greenwood / Chester – Thellung formalism
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 For these dense conditions we abandon the pseudopotential
approach and use a bare proton (this forces high plane wave cutoff 
energies)

 We calculate the full set of Onsager transport coefficients and 
calculate the thermal conductivity directly (no Wiedemann-Franz law 
assumptions)

Fermi weights Dipole matrix elements

Energy conservationOnsager weights



Larger boxes (more atoms) are necessary to converge the 
degenerate limit
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2.7 Å

1024 H atoms

0.0208 Å3/atom

0.14 aB
3 /atom

T = 10 eV

80 g/cc H

or 

200 g/cc DT

P = 13 Gbar



The transport properties are also difficult to converge in the
high temperature limit, particularly the thermal conductivity
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We extrapolate to infinite bands through the assumption
of a power law scaling of the dipole matrix elements

Desjarlais, Scullard, Benedict, Whitley, and Redmer,  Phys. Rev. E 95, 033203 (2017)

= 40 g/cm3



The electrical conductivities from the Kubo-Greenwood
calculations agree well with our quantum Lenard-Balescu results
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Residual differences are due to small degeneracy effects included in the DFT
but not the QLB.  The sum rule on  is well satisfied.

 = 40 g/cm3



The thermal conductivities from the Kubo-Greenwood calculations () 
do not agree with our quantum Lenard-Balescu results 
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 = 40 g/cm3



Density functional theory provides an accurate description
of the electrical conductivity in the non-degenerate limit,
but only partially captures the thermal transport

13

Explicit e-e collisions,
missing from DFT

See:   Desjarlais, Scullard, Benedict, Whitley, and Redmer, Phys. Rev. E 95, 033203 (2017)

No momentum transport for e-e

DFT

DFT



The thermal conductivities from the Kubo-Greenwood calculations
with an e-e correction () agree with our quantum Lenard-Balescu results 
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The red points show the agreement when an explicit e-e scattering correction, calculated
in the Zubarev formalism (T-matrix, Boltzmann collision operator) is added to the thermal.

Small differences due to the treatment of degeneracy remain



We build a wide-range model with a suite of semi-classical 
algorithms tuned to the results of our calculations

 Lee-More-Desjarlais algorithms*
 Non-ideal Saha ionization model

 Electron-ion and electron-neutral scattering

 Degeneracy dependent reduction factors for electron-electron 
scattering 

 Wide-range Coulomb logarithm model

 Depends on ii in the degenerate limit

 Includes bminC, bminQ  for the classical or quantum minimum impact 
parameter in the plasma limit

 Includes bmax tuned to capture effects of dynamic screening

 Several additional minor tuning parameters

15* MPD, Contrib. Plasma Phys. 41, 267 (2001)



The plasma literature suggests a variety of choices for
the minimum impact parameter in the quantum limit
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We found optimum choices of bmax and bminQ
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The thermal conductivity is equally well fit with the same
parameters
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10 g/cm3

QLB calculations 



Dynamic screening has a greater effect in reducing
the thermal conductivity, pushing L below the Spitzer limit
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Spitzer limit 1.622

Points from QLB calculations 
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Degenerate limit  3.290  (Wiedemann-Franz)

Lorenz number

10 g/cm3



The model accurately represents the QLB electrical 
conductivity results over many decades of  and T
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Degeneracy coming in to play

0.0169 g/cm3

169 g/cm3

Points from QLB calculations 



The model accurately represents the QLB thermal
conductivity results over many decades of  and T
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Degeneracy coming in to play

0.0169 g/cm3

169 g/cm3

Points from QLB calculations 

QLB

These QLB results are lower than the current LLNL thermal conductivity model by about 15%



The model is tuned to our DFT Kubo-Greenwood
electrical conductivity calculations in the degenerate limit 
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10 g/cm3

QLB calculations 

DFT K-G calculations 



The model is tuned to our DFT Kubo-Greenwood
thermal conductivity calculations in the degenerate limit 
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10 g/cm3 QLB calculations 

DFT K-G calculations 

DFT

w/ e-e



We accurately fit DFT-KG electrical conductivities
calculated at higher density in the non-degenerate limit 
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40 g/cm3

DFT K-G calculations 



The DFT-KG thermal conductivities in the non-degenerate
limit are missing the explicit e-e scattering contribution
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40 g/cm3

Consequence of e-e collisions
missing from DFT

DFT K-G calculations 



The wide-range model is in good agreement with Zubarev
electrical conductivity calculations for hot expanded plasmas
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100 kK

50 kK Points from Zubarev LRT calculations:
Reinholz, Redmer, and Nagel 



The wide-range model is in good agreement with Zubarev
thermal conductivity calculations for hot expanded plasmas
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100 kK

50 kK

Points from Zubarev LRT calculations:
Reinholz, Redmer, and Nagel 

We will revisit the Zubarev calculations with static screening lengths matched to dynamic screening

Zubarev



Summary

 Comparisons between state-of-the-art 3D simulations and 
data from NIF experiments are in better agreement when the 
current model for thermal conductivity is reduced

 We have combined results from 3 different calculational
frameworks to tune a wide-range model for the electrical and 
thermal conductivity of hydrogen emphasizing ICF conditions

 The model accurately captures the results of the calculations, 
particularly in the region of the hot-spot boundary where 
sensitivity is greatest, and provides for a 15% lower thermal 
conductivity
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