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HIFiRE-II Scramjet

Development of scramjet2 engine involves

flow simulations

uncertainty quantification (UQ)

design optimization

We focus on the HIFiRE-II3 configuration:

2supersonic combustion ramjet
3Hypersonic International Flight Research and Experimentation-II
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Computational domain of initial unit problem

Final: simulation of full combustor domain, match experimental setup
—HIFiRE Direct Connect Rig (HDCR) [bottom-left figure]

Initial unit problem: primary injection section

omit cavity

no combustion

focus on interaction of fuel jet and supersonic air crossflow

4 
 

three dimensional view of the HDCR model and a close-up of the instrumentation package as installed in 
the AHSTF is given in Figure 3.  The model is instrumented with 144 pressure taps, 23 thermocouples, 
and 4 heat flux transducers along the flowpath.  The pressure taps were placed along the centerline of 
the flowpath and across several span wise locations.  Thirteen thermocouples and all heat flux 
transducers were offset by 0.75” from the centerline for either the cowl or the body side walls.  Six 
thermocouples (3 for the port side and 3 for the starboard side) were placed along the sidewalls and 4 
thermocouples were placed on the outer mold line (OML).  A complete summary of the sensor 
arrangement is found Appendix C.  To orient the reader (see Figure 4), the flowpath starts at axial station 
x=0.0” (which corresponds to the facility nozzle exit/isolator entrance), the base of the pilot cavity is at 
x=11.58”, the beginning of the ramp/cavity closeout is at x=14.15”, and the end of the ramp/cavity 
closeout is at x=15.79”.  Fueling can be provided at x=7.60”, 9.60”, 11.92”, 16.5”, and 19.75”. 

 

     
 

Figure 3. Three dimensional view of the HDCR instrumentation layout and a close-up view as 
installed in the AHSTF. 

 
 
 

 
Figure 4.  Approximate axial locations for HDCR temperature or heat flux sensors. 
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RAPTOR LES solver: model variants

RAPTOR: LES solver by Oefelein et al. at Sandia [Oefelein 06]

Near linear scalability 
beyond 100,000 cores 

1 
1 

d/8 d/16 d/32

Grid Resolution

10
0

10
2

10
4

10
6

C
P

U
 H

o
u
rs

2D

3D

Highly-scalable but still very expensive

Motivation: different “model variants” are available under RAPTOR,
trading off between solution accuracy and computational costs:

Different grid resolutions
Emulation using 2D geometry
Static approximation of Smagorinsky model for SGS eddy viscosity
Varying degree of detail in chemical mechanisms
. . .

⇒ to use/combine them, need to quantify the error due to model structure
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Overview

Challenge:
LES is expensive, many flow solves needed to perform UQ and design

Would like to:
incorporate results from less expensive simulations of lower-fidelity models,
while capturing model errors

Objective: characterize uncertainty due to model error resulting from
using lower-fidelity models

Plan: represent the model error stochastically, by embedding a discrep-
ancy term in the model parameters in a non-intrusive manner, where
predictions automatically satisfy the governing equations
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Embedded representation of model error

Traditional additive form: [Kennedy & O’Hagan 01][Kennedy 01]

qk = ρk fk(λ) + δk + εdk

Flexible for fitting model discrepancy

Only applies corrections on model output, not on input parameters

δk not transferable for prediction of QoIs outside calibration set

Predictions generally do not obey governing equations

Difficult to distinguish uncertainty contributions between model error
and measurement noise

Embedding approach: [Sargsyan et al. 15][Sargsyan 15]

qk = fk(λ+ δk) + εdk

⇒ physically-meaningful predictions that auto satisfy governing equations
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Model error representation via polynomial chaos

Represent the discrepancy term δ in a stochastic manner using a
polynomial chaos expansion (PCE):

λ+ δ(α, ξ) = λ+
∑
β 6=0

αβΨβ(ξ)

α̃ ≡ (λ, α)–calibration parameters ξ–aleatoric source (rep. model error)

Safer extrapolation of δ over k since is always a λ correction

PCE in a nutshell: an expansion for a random variable:

θ(ξ) =
∑
β∈J

cβΨβ(ξ)

cβ: PCE coefficients

ξ: reference random vector (e.g., uniform, Gaussian)

Ψβ: multivariate orthonormal polynomial (e.g., Legendre, Hermite)

β: multi-index, reflects order of polynomial basis
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Bayesian calibration of model error

Calibrate by inferring all parameters α̃ ≡ (λ, α) via

Bayesian inference: p(α̃|D)︸ ︷︷ ︸
posterior

∝ p(D|α̃)︸ ︷︷ ︸
likelihood

p(α̃)︸︷︷︸
prior

α̃

P
D
F D

α̃

P
D
F

Calibration data D is often higher-fidelity model simulations

⇒ capturing model error of low-fidelity model w.r.t. high-fidelity model
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True likelihood is intractable

Posterior explored via Markov chain Monte Carlo (MCMC)

adaptive Metropolis [Haario 01]

efficient Gaussian proposal constructed from chain samples

MCMC requires likelihood evaluation p(D|α̃), but have no analytical form

Enable tractable likelihood evaluation via two approximations:

1 Deterministic surrogate for low-fidelity model, built using regression

fk(·) ≈ f̂k(·) + εk,LOO

εk,LOO ∼ N (0, σ2
k,LOO) models the discrepancy between f̂k and fk ,

σ2
k,LOO approximated from average leave-one-out cross validation error

Purpose: to replace the many subsequent low-fidelity model evaluations
needed in MCMC; can skip if low-fidelity model inexpensive
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Approximate likelihood using Gauss-marginal form

2 Gauss-marginal approximation to likelihood

p(D|α̃) ≈ 1

(2π)
N
2

N∏
k=1

1

σk(α̃)
exp

[
−(µk(α̃)− Dk)2

2σ2
k(α̃)

]

where µk(α̃) and σ2
k(α̃) are obtained by constructing a PCE for f̂k at given

α̃ and in the argument of ξ:

f̂k(λ+ δ(α, ξ)) = f̂k

λ+
∑
β 6=0

αβΨβ(ξ)

 ≈∑
β

f̂k,β(α̃)Ψβ(ξ)

and so µk(α̃) ≈ f̂k,0(α̃) and σ2
k(α̃) ≈

∑
β 6=0 f̂

2
k,β(α̃)

This PCE needs to be constructed at every α̃ encountered in the MCMC,
but not too expensive if we are working with f̂k instead of fk (use NISP)
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Attribution of total predictive variance

A nice result: attribute total predictive variance to different sources

Recall qk =fk(λ+ δ(α, ξ)) + εdk

≈f̂k(λ+ δ(α, ξ)) + εk,LOO + εdk

≈
∑
β

f̂k,β(α̃)Ψβ(ξ) + εk,LOO + εdk

Var [qk ] = Eα̃
[
σ2
k(α̃)

]︸ ︷︷ ︸
model error

+ Varα̃ [µk(α̃)]︸ ︷︷ ︸
posterior uncertainty

+ σ2
k,LOO︸ ︷︷ ︸

surrogate error

+ σ2
dk︸︷︷︸

data noise
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Dynamic-vs-Static Smagorinsky turbulence model

Calibrate static Smagorinsky model with dynamic treatment simulations

3D geometry

Calibrate using TKE y -profile (t-averaged, at fixed x , centerline z)
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Dynamic-vs-Static Smagorinsky turbulence model
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2D-vs-3D: choice of embedding parameters

Calibrate 2D model using 3D model simulations

Calibrate using χ profile
λ = (CR ,Pr

−1
t ,Sc−1

t , Ii , Ir , Li )
We do not want to embed δ for all λ, too many terms

Embed δ in select parameters
Employ triangular form of PCE for multivariate embedding
Target parameters where embedding is most “effective”

Global sensitivity analysis on calibration QoIs
Bayesian model selection (evidence computation)
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Embed δ in select parameters
Employ triangular form of PCE for multivariate embedding
Target parameters where embedding is most “effective”

Global sensitivity analysis on calibration QoIs
Bayesian model selection (evidence computation)

Embed Param GSA S̄Ti
Log-evidence

CR 5.24× 10−1 2.82× 102

Pr−1
t 1.58× 10−2 −2.55× 103

Sc−1
t 4.90× 10−1 2.30× 102

Ii 3.63× 10−2 −9.68× 102

Ir 2.24× 10−3 −3.74× 103

Li 5.32× 10−2 −4.15× 102

CR , Sc
−1
t 2.79× 102
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2D-vs-3D: choice of embedding parameters
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Embed δ in select parameters
Employ triangular form of PCE for multivariate embedding
Target parameters where embedding is most “effective”

Global sensitivity analysis on calibration QoIs
Bayesian model selection (evidence computation)

⇒ embed in CR and Sc−1
t

(λ+ δ(α, ξ)) =



CR + α(1)ξ1

Pr−1
t

Sc−1
t + α(1,0)ξ1 + α(0,1)ξ2

Ii

Ir

Li
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2D-vs-3D: predictive quantities
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Conclusions

Conclusions:

Introduced a framework for characterizing uncertainty from model error

embed discrepancy in model parameters; non-intrusive
predictions automatically satisfy governing equations

Attributed total predictive variance to different contributing sources

Illustrated good capture of model-to-model discrepancy, and also
limitations when models are too different

Demonstrated method in a non-reactive unit problem in scramjet
design involving expensive LES:

Dynamic vs. static Smagorinsky model treatment
2D vs. 3D geometry

Future work:

Bayesian model selection for optimal model error embedding

More sophisticated forms of embedding

Full HDCR geometry with combustion
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