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HIFIRE-Il Scramjet

Development of scramjet? engine involves
o flow simulations
@ uncertainty quantification (UQ)
@ design optimization

We focus on the HIFiRE-II3 configuration:

Fuel System

Forebody/ Inlet

2supersonic combustion ramjet
3Hypersonic International Flight Research and Experimentation-I|
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Computational domain of initial unit problem

Final: simulation of full combustor domain, match experimental setup
—HIFIiRE Direct Connect Rig (HDCR) [bottom-left figure]

Initial unit problem: primary injection section
@ omit cavity
@ no combustion

@ focus on interaction of fuel jet and supersonic air crossflow
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RAPTOR LES solver: model variants

RAPTOR: LES solver by Oefelein et al. at Sandia [Oefelein 06]
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Highly-scalable but still very expensive

Motivation: different “model variants” are available under RAPTOR,
trading off between solution accuracy and computational costs:

o Different grid resolutions

@ Emulation using 2D geometry

@ Static approximation of Smagorinsky model for SGS eddy viscosity

@ Varying degree of detail in chemical mechanisms

o ...
= to use/combine them, need to quantify the error due to model structure
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Overview

Challenge:
LES is expensive, many flow solves needed to perform UQ and design

Would like to:

incorporate results from less expensive simulations of lower-fidelity models,
while capturing model errors

Objective: characterize uncertainty due to model error resulting from
using lower-fidelity models

Plan: represent the model error stochastically, by embedding a discrep-
ancy term in the model parameters in a non-intrusive manner, where
predictions automatically satisfy the governing equations
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Embedded representation of model error

Traditional additive form: [Kennedy & O’Hagan 01]

gk = pf(N) + Ok + €q,

Flexible for fitting model discrepancy

Only applies corrections on model output, not on input parameters

o
o
@ Oy not transferable for prediction of Qols outside calibration set
@ Predictions generally do not obey governing equations

o

Difficult to distinguish uncertainty contributions between model error
and measurement noise

Embedding approach: [Sargsyan et al. 15]
qk = fk(>\ + (5/() + Gdk

= physically-meaningful predictions that auto satisfy governing equations
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Model error representation via polynomial chaos

Represent the discrepancy term ¢ in a stochastic manner using a
polynomial chaos expansion (PCE):

A+ 0(0, ) = A+ > agWs(é)
B#0
@& = (\, a)—calibration parameters ¢—aleatoric source (rep. model error)

Safer extrapolation of § over k since is always a A correction

PCE in a nutshell: an expansion for a random variable:

0(6) = caV¥s()
BeT
@ cg: PCE coefficients

e ¢&: reference random vector (e.g., uniform, Gaussian)
e W3: multivariate orthonormal polynomial (e.g., Legendre, Hermite)
@ 3: multi-index, reflects order of polynomial basis
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Bayesian calibration of model error

Calibrate by inferring all parameters & = (), «) via

Bayesian inference: p(&|D) o p(D|&) p(&)
——— N N

posterior likelihood prior
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Calibration data D is often higher-fidelity model simulations

= capturing model error of low-fidelity model w.r.t. high-fidelity model
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True likelihood is intractable

Posterior explored via Markov chain Monte Carlo (MCMC)
@ adaptive Metropolis [Haario 01]
o efficient Gaussian proposal constructed from chain samples
MCMC requires likelihood evaluation p(D|@), but have no analytical form

Enable tractable likelihood evaluation via two approximations:
@ Deterministic surrogate for low-fidelity model, built using regression
f(-) = fi(-) + €x,Loo

ex,Loo ~ N(0, Uﬁ}LOO) models the discrepancy between f, and fy,
UI2<,LOO approximated from average leave-one-out cross validation error

Purpose: to replace the many subsequent low-fidelity model evaluations
needed in MCMC; can skip if low-fidelity model inexpensive
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Approximate likelihood using Gauss-marginal form

@ Gauss-marginal approximation to likelihood

e exp | (@) = Di)*
PO~ o Lo [ ]

where 14 (&) and 02 (é) are obtained by constructing a PCE for £, at given
& and in the argument of &:

N

and so 1uk(@) % fio(@) and o7(&) ~ 3 50 F25(@)

This PCE needs to be constructed at every & encountered in the MCMC,
but not too expensive if we are working with f; instead of fx (use NISP)
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Attribution of total predictive variance

A nice result: attribute total predictive variance to different sources

Recall qk =fk(A+6(a, &) + €eq,
~f(A + 5(c, €)) + exL00 + €4,
~ Y fp(@)Vp(8) + exroo + €q,
B

k

Var[gu] = E [0%(&@)] + Vara[(@)] + oko0 + 03
~ —— —

model error posterior uncertainty  surrogate error  data noise
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Dynamic-vs-Static Smagorinsky turbulence model

Calibrate static Smagorinsky model with dynamic treatment simulations
o 3D geometry
o Calibrate using TKE y-profile (t-averaged, at fixed x, centerline z)
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@ Embed in parameter A = Cg
o lst-order expansion for 6 = af (i.e., Gaussian)

@ Surrogates: 500 regression points, 3rd-order PCEs
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Dynamic-vs-Static Smagorinsky turbulence model

gle= ole—
=+ Data from high-fid model <+ Data from high-fid model
7 e 20 due to posterior 7 L 20 due to low-fid model error
20 due to surrogate for low-fid =27 due to posterior
6 I * 6f o N\ 20 due to surrogate for low-fid
5 5
w w
Ya Ya
F - F -
3 3
2 2
1 - 1 -
B P e P P PP
=3 =3 =] -1 =3 =3 =] =1
y/d y/d
4 — 4. S
38 ( ‘. 38 ( ‘.
3.6) “ e, 3.6) “ .
300 i 300l .
<+ Data from high-fid model
. Data from high-fid model e 20 due to low-fid model error
2.8 20 due to posterior 2.8 W 20 due to posterior
2 due to surrogate for low-fid 20 due to surrogate for low-fid
2 =7 =3 ) -1 2 3 =3 =2 -1

Huan et al

uld

No model error treatment

( SIAM-NC, Orlando

uld

Embedded model error treatment

FL




2D-vs-3D: choice of embedding parameters

Calibrate 2D model using 3D model simulations
o Calibrate using x profile
o A= (Cr,Pr;Y,Sc; L 10, L))
@ We do not want to embed ¢ for all A\, too many terms
o Embed 0 in select parameters
e Employ triangular form of PCE for multivariate embedding
o Target parameters where embedding is most “effective”

o Global sensitivity analysis on calibration Qols
o Bayesian model selection (evidence computation)

Sensitivity Index
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2D-vs-3D: choice of embedding parameters

Calibrate 2D model using 3D model simulations
o Calibrate using x profile
-1 -1
o \= (CR7 Prt 75Ct )Il'u lr7 LI)
@ We do not want to embed ¢ for all A\, too many terms
o Embed 0 in select parameters
e Employ triangular form of PCE for multivariate embedding
o Target parameters where embedding is most “effective”
o Global sensitivity analysis on calibration Qols
o Bayesian model selection (evidence computation)

Embed Param GSA St Log-evidence
Cr 5.24 x 101 2.82 x 102
Pt 1.58 x 1072 —2.55 x 10°

Sc; ! 4.90 x 101 2.30 x 102

I; 3.63x 1072  —9.68 x 102

I 224 x 1073  —3.74 x 103

L; 532 x 1072  —4.15 x 10?

Cr, Sc; 2.79 x 102
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2D-vs-3D: choice of embedding parameters

Calibrate 2D model using 3D model simulations
o Calibrate using x profile
o A= (Cr, Pr; %, Scit I 1y, L)
@ We do not want to embed ¢ for all A\, too many terms
o Embed 0 in select parameters

e Employ triangular form of PCE for multivariate embedding
o Target parameters where embedding is most “effective”

o Global sensitivity analysis on calibration Qols

o Bayesian model selection (evidence computation)

= embed in Cg and Sc;?
Cr + a)&1
prt

(A +6(a,8)) = Sei !+ apob + el
I;
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2D-vs-3D: predictive quantities
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Conclusions

Conclusions:

@ Introduced a framework for characterizing uncertainty from model error

e embed discrepancy in model parameters; non-intrusive
e predictions automatically satisfy governing equations

@ Attributed total predictive variance to different contributing sources

@ lllustrated good capture of model-to-model discrepancy, and also
limitations when models are too different

@ Demonstrated method in a non-reactive unit problem in scramjet
design involving expensive LES:

e Dynamic vs. static Smagorinsky model treatment
e 2D vs. 3D geometry

Future work:
@ Bayesian model selection for optimal model error embedding
@ More sophisticated forms of embedding
e Full HDCR geometry with combustion

Huan et al. (Sandia) SIAM-NC, Orlando, FL April 3, 2017 17 /17



References |

[
B
B
B

Heikki Haario, Eero Saksman & Johanna Tamminen.
An adaptive Metropolis algorithm.

Bernoulli, vol. 7, no. 2, pages 223-242, 2001.

Marc. C. Kennedy & Anthony O'Hagan.

Bayesian calibration of computer models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 63, no. 3, pages 425-464, 2001.

Joseph C. Oefelein.

Large eddy simulation of turbulent combustion processes in propulsion and power systems.
Progress in Aerospace Sciences, vol. 42, no. 1, pages 2-37, 2006.

Khachik Sargsyan, Habib N. Najm & Roger G. Ghanem.

On the Statistical Calibration of Physical Models.
International Journal of Chemical Kinetics, vol. 47, no. 4, pages 246-276, 2015

Huan et al i SIAM-NC, Orlando, FL April 3, 2017



	Flow Solver
	Model Error
	Conclusions and Future Work

