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Background
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Overview of Z Facility

ZBL 2ω conversion

ZPW
Z-Petawatt

Pecos
target chamber

ZBL
Z-Beamlet

Z-AcceleratorZ-Backlighter 
Lasers

Jemez
target 

chamber

Chama
target chamber



4/13/2017 5

Combining x-ray diagnostics with Z’s unique warm dense 
matter (WDM) samples to provide benchmark quality data 

 Z’s WDM samples are large, uniform, long-lived and precisely characterized

 Expand diagnostic capabilities on Z beyond pressure and density measurements
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Z is a unique platform for WDM studies

 Magnetically launched flyer plates for shock compression1

 Flyer impact velocities to ~ 40 km/s

 Hugoniot states to ~ 10 Mbar; 10,000 – 50,000 K

 Pressure and density characterized ~ 1-2 %

 Ramp (shockless) compression2

 Continuous quasi-isentropic compression to ~5 Mbar

 Strain rates ~106-107 /s

 Lower temperature states ~ 1000 – 3000 K

 Shock-ramp compression3

 Initial flyer impact followed ramp loading

 Complex loading path access off-Hugoniot states

 Shock melt and ramp refreeze

Anode/Flyer Plate

Target

J

B

cathode anode/sample

undisturbed material

 Dynamic material properties (DMP) experiments

2J.-P. Davis et al., Phys. Plasmas 12, 056310 (2005)

1R.W. Lemke et al., J. Appl. Phys. 98, 073530 (2005)

3C. T. Seagle et al., Appl. Phys. Lett. 102, 244104 (2013)
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Three key components needed to implement x-ray 
diagnostics on Z-DMP experiments

 Produce source x-rays

 Laser (ZBL/ZPW) irradiated metal foil

 Generate high-pressure state

 Z-DMP load 

 Debris mitigation

 X-ray background

 Detect scattered x-rays 

 Spherical crystal spectrometer

 Image plate

 Scintillator/phosphor

 CCD camera

Z-DMP
load

X-ray
source

scattered
x-rays

Detector

incident
x-rays

debris
mitigation
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Z-DMP planar experiments

 Coaxial load

 Cathode stalk surrounded by 
anode panels

 Dual pressures possible on north 
and south panels

 More sample locations

 Enclosed magnetic fields, current 
and plasma flow

 Stripline load
 Identical pressure on both 

cathode and anode panels
 Higher current density and 

pressure
 Open magnetic fields, current 

and plasma flow
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Z-DMP cylindrical experiments
 Cylindrical implosion reaches extreme pressure states1

 Current pulse shaping creates ramp-wave compression

 Quasi-isentropic compression to 20 Mbar
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1M. R. Martin et al., Phys. Plasmas 19, 056310 (2012)
2D. H. Dolan et al., Rev. Sci. Instrum. 84, 055102 (2013)

 Diagnostics are challenging2

 Limited space

 Miniature probes

 Velocities beyond 40 km/s
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Challenges of Z-DMP experiments

 Target parameters

 Large and thick samples

 Reflection geometry

 Destructive environment of Z-DMP load

 Prevent catastrophic vacuum breach

 Protect Z-Backlighter Lasers

 Retrieve data

 X-ray background

 High energy photons (up to 10 MeV) produced

 Sufficient signal-to-noise

 Electromagnetic pulse (EMP)

 Fry electronics
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Z2959: Protection and recovery of any detector near 
Z-DMP load highly unfeasible
 Unable to field any x-ray detector such as 

image plate, x-ray CCD, x-ray streak camera 
within blast shield (~50 cm diameter)

pre-shot

post-shot

post-shot

blast
shield

debris
witness
plate

Z-DMP
load
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Recent results
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X-ray Thomson scattering (XRTS) diagnostic has been 
implemented on Z
 Extract to infer ne, T, <Z>, and phase information about sample from 

scattered x-rays

 Spectrally resolve elastic and inelastic features

 Spatially distinguish scattering origination within sample

atomic structure, S(k)

electron density, ne

electron temperature, Te

ion temperature, Ti

ionization state, <Z>

incident
x-rays

Rayleigh

WDM state

collectively
scattered x-rays

h

h

h

non-collectively
scattered x-rays

Compton

bound-free

Rayleigh

down-shifted
Plasmon up-shifted

Plasmon

S. H. Glenzer and R. Redmer, Rev. Mod. Phys. 81, 1625 (2009).
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Experimental setup of Z-XRTS
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 X-ray scattering spherical spectrometer (XRS3)

 Resolve scattered x-rays spectrally and spatially using spherically bent crystal 
 Ge 422

 Record x-rays  image plate (IP)
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Spatial resolution is essential for benchmark quality XRTS

Al 
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 Measure XRTS signal from 
ambient & shocked material, 
and x-ray source

 VISAR: Al flyer impact velocity; 
CH2 sample shock velocity, 
verify steady-state of WDM

 XRS3: characterize Mn x-ray 
probe spectrum

 ALEGRA calculations with Al flyer (25 km/s)

 Ambient CH2 foam: 

 (7.5 x 5 x 2.5) mm, r0=0.12 g/cm3

 Shocked CH2 foam: 

 P = 0.75 Mbar, = 0.52 g/cm3, T = 4.3 eV
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Z2661: Simultaneously recorded space-resolved scattering 
spectra from shocked & ambient states, and source

Mn x-ray source
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6000 6050 6100 6150 6200 6250
0

0.5

1

1.5

2

2.5

3

Energy (eV)

In
te

n
si

ty
(a

.u
.)

6000 6050 6100 6150 6200 6250
0

0.1

0.2

0.3

0.4

0.5

Energy (eV)

In
te

n
si

ty
(a

.u
.)

ambient CH
2

shocked CH
2

Mn x-ray source
CH2 foam scattering

shocked ambient
Mn He-

resonance
Mn He-like 

intercombination

Mn Li-
like

satellites

 Backward scattering 
(90°) of shocked CH2 

foam on image plate

T. Ao, et al., HEDP. 18, 26 (2016).
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Z2704: Improved spectral and spatial resolution using 
x-ray film
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T. Ao, et al., HEDP. 18, 26 (2016).
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Z2750: Constrained scattering angle to reduce angular 
smearing
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T. Ao, et al., HEDP. 18, 26 (2016).
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Future developments
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X-ray diffraction (XRD) to diagnose material lattice 
dynamics during shock/ramp compression

 What?

 Characterize phase transformations that 
occur in dynamically compressed 
condensed matter on ns time scales and 
nm spatial scales

 Why? 

 For most materials, there are very few 
constraints on existing models for phase 
transitions under dynamic loading

Powder x-ray diffraction pattern

 How?

 Perform time-resolved, x-ray diffraction 
measurements on dynamically compressed, 
polycrystalline matter 
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General experimental design of Z-XRD

detector

ZBL/ZPW

x-ray
source
target

Z-DMP
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diffracted
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Addressing challenges of Z-XRD 

 High photon energy (>6 keV), short duration (~1ns) multi-pulse x-ray sources 
(ZBL and/or ZPW)

 Penetrate into thick and high Z targets

 Temporally resolve phase transformations

 Placing image plate, x-ray CCD, or x-ray streak camera near load

 Advanced debris mitigation

 Robust x-ray and EMP shielding

 Convert diffracted x-rays into visible photons

 X-ray phosphor/scintillator near load

 Transport optical light out of load region (open optics)

 Record light on optical CCD away from debris, x-ray background and EMP field
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Z-XRD using scintillator/optical relay/CCD camera
 Operation

 Scintillator located close to sample 
inside blast shield

 X-ray conversion to optical light

 Optical relay to outside blast shield 
and center section onto CCD camera

 Advantages

 Time gating, possible multiple events

 Disadvantages

 Optical background mitigation

 Scintillator and optics destroyed

 Alignment considerations

optical
relay

CCD
camera

center
section

scintillator

blast
shield
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Possible 1st Z-XRD experiments with Z-Beamlet 
generated 6-8 keV x-rays

Lithium Beryllium

C. L. Guilliame et al., Nature Physics 7, 211 (2011) 

Experimental 
trajectory

 Lithium has very low mass attenuation 
coefficient (probe ~1 mm thickness)

 Timed correctly, a two-phase pattern 
(bcc/fcc) may be observed

 Free surface ramp compression with 
XRD diagnostic timed to probe bcc-fcc 
phase transition

A. Lazicki et al., PRB 86, 174118 (2012)

 Beryllium also has low mass attenuation 
coefficient, but no phase transitions with 
ramp; XRD should see compression of the 
hcp lattice

 Alternatively, attempt to shock into bcc, 
probe before free surface breakout

Hugoniot 
may not 
intersect 
bcc?
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Comparison of laser-to-x-ray conversion efficiencies

Ti Mn Cu Zn Ge Ag Sn

ZBL, 1000 ps, 1000 J, 1015 W/cm2:
η ≈ 10-6

ZPW, 100 ps, 100 J, 1018 W/cm2:
η ≈ 3 × 10-5

ZPW, 0.5 ps, 100 J, 1020 W/cm2:
η ≈ 2 × 10-4

 Steep drop in efficiency for long pulse (ns) laser driven He x-ray emission 
> 10 keV

 More gradual drop in 
efficiency for short pulse 
(sub-ns) laser driven K

x-ray emission > 10 keV
 Off-axis parabola 

focusing



4/13/2017 26

 X-ray source requirements for Z-XRD

▪ Above 10 keV to penetrate high Z and thick targets

▪ Monochromatic (E ~0.1 eV)

▪ Short emission duration (< 1 ns or below)

▪ Multi-pulse with >5 ns inter-pulse delays

→ use multiple Kα bursts from period-5 transition metals (15-25 keV)

 Laser and focusing hardware:

▪ Multi-pulse capability

▪ Sub-ns pulse duration

▪ Final focusing optics well-shielded from Z debris (difficult using off-axis parabola)

→ modify ZPW for multi-pulse, 100-ps operation, use existing ZBL lens focusing 

Focusing ZPW with lens to generate K x-ray source
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Summary

 Demonstrated spaced-resolved x-ray Thomson scattering of shocked 
carbon foams on Z

 Simultaneous measurements of shocked and ambient states

 In-situ x-ray source characterization

 Backward and forward scattering

 Image plate and film comparison

 Development of an x-ray diffraction diagnostic for Z

 Scintillator/optical relay/CCD camera scheme

 Higher photon x-ray source with lens-focusing of short-pulse laser
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Extra slides
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Reproducibility of flyer velocities, ZBL time of arrival, and 
shock break time of CH2 foam (Z2661, Z2704, Z2750)
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Ambient XRD of Be (hcp) sample with Z-Beamlet

 B17012702, 1085 J, Mn(88%)-Ni(12%) foil, 6.2 keV x-rays

 X-ray source: 152 mm from input pinhole

 IP: 140 mm from Be sample
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 Photometrics: 
 X-ray source ~1016 photons

 Photons incident on Be sample ~ 4×1010

 Be scattering fraction ~ 0.01

 Total collected photons per pixel ~ 2.4

 TR-IP sensitivity at 6keV ~ 3.3 mPSL/γ

 Expected signal ~ 0.01 PSL
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 Open optical beam propagation

 Z-DMP load

 Blast shield

 Center section

Optical image relay
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