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Introduction

General Ligand Synthesis Water Soluble Ligands

Subterranean geothermal and shale-oil wells reside Following established routes, a family of salen derivatives was synthesized by an aldehyde amine * lonic =0 * Non-ionic
several kilometers below the surface of the earth. condensation.’ o o
Currently, few viable fluid flow tracking methods exist =0 Q or N | e
that can accurately monitor and examine long-term 4 ) NG o
fluid flows. When wells are opened, there are several i OH Hy-saloPh-Br, =t o +
paths of fluid-flow which need to be monitored. The HoN w Hj-saloPh-Br o N
use of porous ceramic proppants loaded with : MeOH \Hz-sanPh-Bu; QP+ lo, HoN NH,
molecular “taggants” has been proposed as a viable 24h g
method of tracking close proximity wells with accuracy / N\ MeOH S FIOH MeOH
and relative ease. Through the use of easily N N | Ya SN | e 0°C
accessible spectroscopic properties these molecular p v N > ? S ((3-(1H-benzold]imidazol-2-yl)-4-hydroxybenzyl)triphenylphosphoniumchloride) I o
“taggants™ can be monitored at the surface and give  schematic of an underground well H,-salo-Br,
information about the underground fluid flow behavior. H,-salo-Br S

In this effort, metal salen [M(salo-R)] complexes _Hz-salo-Bu’) H,-saloPh-Bu' . Q

were investigated as potential “taggants”. Initial
results indicated that these types of compounds  Compounds characterized by a variety of techniques, including
have the physical properties that will survive the  'H NMR, 13C NMR, elemental analysis, FT-IR, Raman and
underground conditions and also have exhibit  single-crystal X-ray analysis. Ligands containing an ethylene ‘
* distinct spectroscopic properties, which should  bridge instead of the shown phenylene bridge were also H.-saloPh-Br
- allow for accurate detection. synthesized and fully characterized. ’
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ceramic proppant Metal Coordination Both ionic and non-ionic routes featured interesting imidazolidine ring formation chemistry as

unwanted side products.
Approach We synthesized a family of compounds focusing on first row transition metals. Coordination complexes
have been synthesized from the in-house prepared H,-saloPh-But and H,-salo-But ligands.
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subsequent sealing of these porous proppants allows for long-term < 1 year monitoring. ( | Bt [ . By Ni(OAc) - ] : : : :
q 5 P PTOPP & Y © VO(OPr),  [VisaloPh-Bu)] ophmyt UM [M,\?l(sa'olphBB,‘;i)] saloPhBuT = e Bu)] The compounds demonstrated unique spectroscopic shifts dependent upon the coordinated metal, and
(i) Porous Proppant (ii) Fill with Taggant (iii) Coat with Polymer (“Time Release”) saloPh-Bu' or [V(salo-Bu’)] saloPh-Bu or [Mg(salo-Bu)] saloPh-(4-NO,)}NO, | liaand. Observed in both FT-IR and Raman shifts
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and modified phenylene-salen (H,-saloPh) with varying metal precursors. ‘o
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vanadium atom due to V=0 bonding aluminum bound to N, O and C toN-and © and solvated in pyridine Analysis of FT-IR fingerprint region reveals distinct FT-IR C=N shifts detail unique signals for different
: : " " ' ' metals and ligands
oH  HO Structures have been solved for the following alkali earth, transition, and post transition metals: spectroscopic shift per ML complex J
OH HO Mg, Ca, SC, TI, Zr, Hf, V, CO, NI, Zn, AI, Ga, In and Tl Summary and Future
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* Showed differential spectroscopic properties when coordinated with different metals Stablllty TeStlng vossible use as molecular tracers for SuFt))terranean fluid flox monitoring
* Insolubility in many hydrocarbon and aqueous systems led to technical issues Long term fluid flow monitoring requires chemical inertness under harsh conditions. « Testing in DMF/toluene/octanes/brine/acidic and basic agueous systems demonstrates stability under
Q high pressure and temperature as well as chemical inertness in a vast majority of the compounds
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- o o -  Additionally, metal ions are present underground in the form of hydroxides and carbonates (among 1100
other salts) and could potentially exchange with the coordinated metal in the tracer ligands. 900
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