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Motivation )=,

= Update “Department of Energy, DOE HANDBOOK: Airborne Release
Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities,
Volume 1 and 2,” DOE-HDBK-3010-94, U.S. Department of Energy,
(Reaffirmed 2013).

=  Contaminant Dispersal->Inhalation Concern
= Cancer
= Local mutation of cells
= Toxicity
= Birth Defects
= Liquid fuel fires containing hazardous materials pose challenges

= Entrainment of fuel droplets w/ contaminants
= Multi-Component Evaporation
= Transport, surface deposition of droplets w/ contaminants




Experimental Scenario ) .

= Experiments: Mishima/Schwendiman

(1973)

= Previous computational study
(nonevaporating) - Brown et al., e (O I
“Contaminant Entrainment from a e il

GLASS FIBER FILTER” [}/

Gasoline Pool Fire,” Fall 2015 Western

States Section of the Combustion Institute “#= | .. &

= Burning of beaker filled with kerosene and ;”Jf
30% tributyl phosphate (TBP) w/

contaminant materials

2 CFM
FLOWMETER

= UO, in our case

= Liquid fuel pre-heated to boiling point,
ignited in 50 mL beaker




Simulation Details ) i,

=  Fuego —Sierra low Mach module (CFD)
=  Fluid

= CVFEM

= Combustion (EDC model)

= Thermal radiation transport (Discrete Ordinates)
=  Particles

= Lagrangian w/ 2 way coupling to fluid

= Momentum, Heat, Mass, Species

=  Multicomponent

Volatile: Kerosene, TBP Inert: UO,

Volatile components enter fluid region, subsequently
burn

Inert component transports within particle region
= Investigate where UO, ends up
= re-absorbed onto fuel surface

= Deposited on side walls \ Air Inflow
= Escaping the upper surface




Particle Motion )=,

= Drag and Buoyancy

dxp B

dt - Vp,Clll'l'Ellt
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Multicomponent Evaporation

7| Netora

= Each particle component can contribute to evaporation with
mass evolved into fluid phase, particle temperature change
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Multicomponent Evaporation (cont.)®.

Heat Applied= Droplet Evaporation
Volatile (Fuel)

Nonvolatile (Contaminant)

———

time




Simulation Parameters Varied

7| Netora

Laboratories

Simulation duration (sec) particle file turbulent KE turbulent dissipation pool height(mm)

EARLY
Early Base 1 160 shortla 1.txt 1.1130E-06 1.1230E-06 40
Early Base 2 160 shortla 2.txt 1.1130E-06 1.1230E-06 40
Early Base 3 160 shortla 3.txt 1.1130E-06 1.1230E-06 40
Early Base 4 160 shortla 4 txt 1.1130E-06 1.1230E-06 40
Early Base 5 160 shortla 5.txt 1.1130E-06 1.1230E-06 40
Early Base 6 160 shortla 6.txt 1.1130E-06 1.1230E-06 40

MID

Base 1 6 startos] . txt 1.1130E-06 1.1230E-06 20

Base 2 6 start6s2. txt 1.1130E-06 1.1230E-06 20

Base 3 6 start6s3. txt 1.1130E-06 1.1230E-06 20

Base 4 6 start6s4. txt 1.1130E-06 1.1230E-06 20

Base 5 6 start6s5. txt 1.1130E-06 1.1230E-06 20
TurbMod7A 60 short input txt 5.9480E-05 1.5300E-04 20
TuwbMod7B 60 short input txt 5.9480E-05 1.9200E-06 20
TurbMod7C 60 short mput txt 5.9480E-03 1.5300E-01 20
TurbMod7D 60 short input txt 5.9480E-03 1.9200E-03 20
TurbMod8A 60 short nputl txt 5.9480E-05 1.5300E-04 20
TurbMod8B 60 short mputl . txt 5.9480E-05 1.9200E-06 20
TurbMod8C 60 short mputl txt 5.9480E-03 1.5300E-01 20
TurbMod8D 60 short inputl txt 5.9480E-03 1.9200E-03 20

LATE
Late Base 1 200 end 200s].txt 1.1130E-06 1.1230E-06 0
Late Base 2 200 end 200s2.txt 1.1130E-06 1.1230E-06 0
Late Base 3 200 end 200s3.txt 1.1130E-06 1.1230E-06 0
Late Base 4 200 end 200s4.txt 1.1130E-06 1.1230E-06 0
Late Base 5 200 end 200s5 . txt 1.1130E-06 1.1230E-06 0
Late Base 6 200 end 200s6.txt 1.1130E-06 1.1230E-06 0

Table 1 The simulation matrix showing all parameters varied in these simulations, including duration, particle
data file used, turbulence parameters at the pool surface, and pool height. -



Evaporating Particle Distribution @&=.

= Each particle component can contribute to evaporation with
mass evolved into fluid phase, temperature change of particle
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Base 1 ) 2=
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TurbMod 8A ) =

= 20mm Height
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Late Base 1 )=,

= Omm Height
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Early Base 1 ) .

e = 40mm Height

7 |=— Pool Surface
16—03? o Escaped' - ? . .
j (S - = Steady particle flux escaping
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Airborne Release Fraction (ARF) UL

= |gnition causes some release of particles from upper surface
but over the course of the simulation, is not a significant

contributor
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Conclusions ) 2=

= ARF results are in good agreement with experimental results
= Statistical differences in particle introduction are important

= Past initial transient, particle deposition rate on fuel surface
and side surfaces is nearly constant

= |gnition event at beginning results in transport of
contaminated particles to upper surface

= Flare ups can occur (especially in late scenarios) and may
result in significant particles transported to escape surface —
not observed in original experiment
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